精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,∠BAD=90°,PA=AD=AB=2BC,M是PC的中点.
(1)求证:PB⊥DM;
(2)求平面PAB与平面PCD所成的锐二面角的余弦值;
(3)试探究线段PB上是否存在一点Q,使得AQ∥面PCD?若存在,确定点Q的位置;若不存在,请说明理由.
考点:二面角的平面角及求法,空间中直线与直线之间的位置关系,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)令BC=1,以A为坐标原点,建立空间直角坐标系.利用向量法能证明PB⊥DM.
(2)求出平面PCD的法向量和平面PAB的法向量,由此能求出二面角的余弦值.
(3)假设线段PB上存在一点Q,有
PQ
PB
,(0≤λ≤1),
AQ
=
AP
PB
=(2λ,0,-2λ+2).若AQ平行平面PCD,推导出λ=2,这与0≤λ≤1矛盾.从而不存在这样的点Q,使得AQ∥平面PCD.
解答: (1)证明:不妨令BC=1,以A为坐标原点,
建立如图所示的空间直角坐标系.
则A(0,0,0),B(2,0,0),C(2,1,0),
D(0,2,0),P(0,0,2)
所以M(1,
1
2
,1),
DM
=(1,-
3
2
,1),
PB
=(2,0,-2)

因为
PB
DM
=2-0-2=0,所以PB⊥DM.…(4分)
(2)解:设平面PCD的法向量为
n1
=(x,y,z),
n1
PC
=2x+y-2z=0
n1
PD
=2y-2z=0
.由z=1,得
n1
=(
1
2
,1,1
).…(6分)
而平面PAB的法向量为
n2
=
BC
=(0,1,0),
∴cos<
n1
n2
>=
1
2+
1
4
=
2
3

∴所求二面角的余弦值为
2
3
.…(8分)
(3)解:假设线段PB上存在一点Q,有
PQ
PB
,(0≤λ≤1),
AQ
=
AP
PB
=(2λ,0,-2λ+2).…(10分)
若AQ平行平面PCD,则
AQ
n1
=0

2λ•
1
2
+1•(-2λ+2)=0

所以λ=2,这与0≤λ≤1矛盾.
故不存在这样的点Q,使得AQ∥平面PCD.…(13分)
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,考查满足条件的点的是否存在的判断与求法,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)右焦点为F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆的离心率的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,0),B(0,2),C(cosθ,sinθ),O为坐标原点.
(1)
AC
BC
=-
1
3
,求sin2θ的值;
(2)若|
OA
+
OC
|=
7
,且θ∈(-π,0),求
OB
OC
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是
3
5
,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(Ⅰ)分别求甲得0分和乙得0分的概率;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设S={x|x≤3},T={x|x<1},求S∩T,S∪T,(∁US)∩T,(∁US)∩(∁UT),∁U(S∪T).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱BB1⊥底面ABC,∠BAC=90°,AB=AC=AA1=2,且E是BC中点.
(I)求锥体A1-B1C1EB的体积;
(Ⅱ)求证:B1C⊥AC1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn+an=-
1
2
n2-
3
2
n+1(n∈N*),设bn=an+n.
(Ⅰ)证明:数列{bn}是等比数列;
(Ⅱ)求数列{nbn}的前n项和Tn
(Ⅲ)设cn=(
1
2
n-an,dn=
cn2+cn+1
cn2+cn
,若数列{dn}的前2013项和为P,求不超过P的最大的整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出下列函数的图象并求出其值域.
(1)y=
1
x
,0<x<1
x,   x≥1

(2)y=-x2+2x,x∈[-2,2];
(3)y=|x+1|.

查看答案和解析>>

同步练习册答案