精英家教网 > 高中数学 > 题目详情
作出下列函数的图象并求出其值域.
(1)y=
1
x
,0<x<1
x,   x≥1

(2)y=-x2+2x,x∈[-2,2];
(3)y=|x+1|.
考点:函数的图象,函数的值域
专题:数形结合法,函数的性质及应用
分析:列表,描点,连线,可得函数的图象,根据图象,求出其值域.
解答: 解(1)列表:
x
1
4
1
2
123
y42123
当0<x<1时,函数图象是双曲线y=
1
x
的一部分;
当x≥1时,函数图象为直线y=x的一部分,所以函数图象如图(1)所示,
由图(1),可得函数的值域是[1,+∞).
(2)y=-x2+2x=1-(x-1)2,x∈[-2,2].
列表:
x-2-1012
y-8-3010

画图象,图象是抛物线y=-x2+2x在-2≤x≤2之间的部分如图(2)所示.
由图(2),可得函数的值域是[-8,1].
(3)当x+1≥0,
即x≥-1时,y=x+1;
当x+1<0,即x<-1时,y=-x-1.
作该分段函数图象如图(3).
由图(3),可得函数的值域是[0,+∞).
点评:本题考查函数的图象并求出其值域,考查数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,∠BAD=90°,PA=AD=AB=2BC,M是PC的中点.
(1)求证:PB⊥DM;
(2)求平面PAB与平面PCD所成的锐二面角的余弦值;
(3)试探究线段PB上是否存在一点Q,使得AQ∥面PCD?若存在,确定点Q的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

省少年篮球队要从甲、乙两所体校选拔队员.现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.
(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中随机选3名队员,用ξ表示乙校中选出的“高个子”人数,试求出ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
1
2
ax2-
1
2
ax,a∈R.
(Ⅰ)当a=2时,求F(x)=f(x)-g(x)的单调区间;
(Ⅱ)当x≥1时,xf(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,AB⊥AD,AD∥BC,AD=2,AB=BC=1,PA=PD=
2
,M为AD的中点,且二面角P-AD-C的大小为60°.
(Ⅰ)求证:AD⊥平面PMC;
(Ⅱ)求直线BM与平面PAD的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+1     -1<x<0
x-1        0<x<1

(1)求f(
1
3
),f(f(
1
3
));
(2)若f(a)>2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:
x123
f(x)136.13615.552-3.92
x456
f(x)10.88-52.488-232.064
求函数f(x)含有零点的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式组.
x-1≥1
2x-(x-1)≤5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=
1
2
,Sn=n2an-n(n-1),n=1,2,…
(1)证明:数列{
n+1
n
Sn}是等差数列,并求Sn
(2)设bn=
Sn
n3+3n2
,求证:b1+b2+…+bn
5
12

查看答案和解析>>

同步练习册答案