精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1,(a>b>0)
的离心率为
3
2
,点P(2,1)是椭圆上一定点,若斜率为
1
2
的直线与椭圆交于不同的两点A、B.
( I)求椭圆方程;
( II)求△PAB面积的最大值.
分析:( I)由e=
c
a
=
3
2
,知c=
3
2
a,b=
1
2
a
,由此能求出椭圆方程.
( II)设直线AB的方程为:y=
1
2
x+m
,与椭圆联列方程组得,
y=
1
2
x+m
x2
8
+
y2
2
=1
,代入得:2x2+4mx+4m2-8=0,再由根的判别式和韦达定理能求出S△PAB的最大值.
解答:解:( I)∵e=
c
a
=
3
2

c=
3
2
a,b=
1
2
a

又P(2,1)在椭圆上,代入椭圆方程,
得:
4
a2
+
1
b2
=1

∴a2=8,b2=2,
椭圆方程为:
x2
8
+
y2
2
=1
…(6分)
( II)设直线AB的方程为:y=
1
2
x+m

与椭圆联列方程组得,
y=
1
2
x+m
x2
8
+
y2
2
=1

代入得:2x2+4mx+4m2-8=0,…(8分)
∵△=16m2-8(4m2-8)>0,
解得,-2<m<2
由韦达定理得:x1+x2=-2m,
x1x2=2m2-4|AB|=
1+
1
4
4m2-4(2m2-4)
=
5
2
16-4m2
=
5
4-m2

P到直线AB的距离:d=
|2m|
5
,…(12分)
S△PAB=
1
2
5
4-m2
|2m|
5
=
(4-m2)m2
≤2

当4-m2=m2
m=±
2
时,
S△PAB有最大值2     …(15分)
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案