精英家教网 > 高中数学 > 题目详情
2.已知圆C的极坐标方程为ρ=2cosθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=4t}\\{y=3t-1}\end{array}\right.$(t为参数),则圆C的圆心到直线l的距离为$\frac{1}{5}$.

分析 求出圆C的直角坐标方程和直线l的直角坐标方程,利用点到直线的距离公式能求出圆C的圆心到直线l的距离.

解答 解:∵圆C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,
∴圆C的直角坐标方程为x2+y2-2x=0,
圆心C(1,0),半径r=$\frac{1}{2}\sqrt{4}$=1,
∵直线l的参数方程为$\left\{\begin{array}{l}{x=4t}\\{y=3t-1}\end{array}\right.$(t为参数),
∴直线l的直角坐标方程为3x-4y-4=0.
∴圆C的圆心到直线l的距离d=$\frac{|3-4|}{\sqrt{9+16}}$=$\frac{1}{5}$.
故答案为:$\frac{1}{5}$.

点评 本题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{{\sqrt{a}x+b}}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且$f(\frac{1}{2})=\frac{2}{5}$.
(1)求实数a,b的值;
(2)判断并证明f(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点是A1,A2,B1,B2,△A2B1B2是边长为2的正三角形.
(1)求椭圆的方程;
(2)若G是椭圆上在第一象限内的动点,直线B1G交线段A2B2于点E,求$\frac{|G{B}_{1}|}{|E{B}_{1}|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则该几何体的体积是6-$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.$\frac{17\sqrt{17}}{6}$πB.34πC.17πD.$\frac{17}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设F1、F2分别是椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{b}$=1(b>0)的左、右焦点.若P是椭圆E上的一个动点.且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最大值为1.
(1)求椭圆E的方程;
(2)设直线x=ky-1与椭圆E交于A、B两点,点A关于x轴的对称点为A′(A′与B不重合).则直线A′B与x轴是否交于一个定点?若是,请写出该定点的坐标,并证明你的结论;若不是.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解方程:
(1)32-x=2;
(2)3x+1=21-2x
(3)($\frac{4}{9}$)x•($\frac{27}{8}$)x-1=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线3x+4y+2m=0与圆x2+(y-$\frac{1}{2}$)2=1相切,且实数m的值为(  )
A.log23B.2C.log25D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设点M是等腰直角三角形ABC的斜边BA的中点,P是直线BA上任意一点,PE⊥AC于E,PF⊥BC于F,求证:
(1)ME=MF;
(2)ME⊥MF.

查看答案和解析>>

同步练习册答案