精英家教网 > 高中数学 > 题目详情
17.某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.$\frac{17\sqrt{17}}{6}$πB.34πC.17πD.$\frac{17}{4}$π

分析 由已知中的三视图可得:该几何体是一个以侧视图为底面的三棱柱,求出其外接球半径,代入球的表面积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以侧视图为底面的三棱柱,
其底面是一个腰为2,底面上的高为$\sqrt{2}$的等腰直角三角形,
故其外接圆半径r=$\sqrt{2}$,
棱柱的高为3,
故球心到底面外接圆圆心的距离d=$\frac{3}{2}$,
故棱柱的外接球半径R2=r2+d2=$\frac{17}{4}$,
故棱柱的外接球表面积S=4πR2=17π,
故选:C

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若α,β为锐角,$cos(\frac{π}{4}+α)=\frac{1}{3},cos(\frac{π}{4}+\frac{β}{2})=\frac{{\sqrt{3}}}{3}$,则$cos(α-\frac{β}{2})$=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{6}}}{9}$D.$\frac{{5\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P是椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1和双曲线x2-y2=2的一个交点,若F1、F2分别是椭圆的左、右焦点,则cos∠F1PF2=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2-6x-8y-5t=0,直线l:x+3y+15=0.
(1)若直线l被圆C截得的弦长为$2\sqrt{10}$,求实数t的值;
(2)当t=1时,由直线l上的动点P引圆C的两条切线,若切点分别为A,B,则在直线AB上是否存在一个定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l与椭圆交于与椭圆相交于A、B两点,点P(1,1)是线段AB的中点,则直线l的斜率为(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆C的极坐标方程为ρ=2cosθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=4t}\\{y=3t-1}\end{array}\right.$(t为参数),则圆C的圆心到直线l的距离为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,…,一直数到2015时,对应的指头是中指(填指头的名称).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各组空间向量相互垂直的是(  )
A.$\overrightarrow{a}$=(0,1,-2),$\overrightarrow{b}$=(2,0,-1)B.$\overrightarrow{a}$=(3,-1,1),$\overrightarrow{b}$=(-1,0,3)
C.$\overrightarrow{a}$=(0,-1,-2),$\overrightarrow{b}$=(0,-2,4)D.$\overrightarrow{a}$=(3,-1,1),$\overrightarrow{b}$=(-3,1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD=4AP,∠BAD=∠PAD=60°,E,F分别是AP,AD的中点.
(1)求证:平面BEF⊥平面PAD;
(2)求二面角P-BE-F的正切值.

查看答案和解析>>

同步练习册答案