精英家教网 > 高中数学 > 题目详情

【题目】2019613日,三届奥运亚军,羽坛传奇,马来西亚名将李宗伟宣布退役,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组;,得到如下图所小的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计,得到部分数据如下的列联表.

1)在答题卡上补全2×2列联表中数据,并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?

2)该论坛欲在上述“强烈关注”的网友中按性别进行分层抽样,共抽取5人,并在此5人中随机抽取两名接受访谈,记女性访谈者的人数为占,求5的分布列与数学期望.

0.150

0.100

0.050

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式与数据:,其中.

【答案】1列联表见解析,没有的把握认为网友对此事件是否为“强烈关注”与性别有关(2)分布列见解析,数学期望

【解析】

1根据频率分布直方图中的频率,计算强烈关注的频率进而得到强烈关注的人数,结合表中的数据即可得到其余数据,补全列联表,根据列联表中的数据计算的值,结合临界值表中的数据判断即可;

2的可能取值为012,分别求出相应的概率,由此能求出的分布列和数学期望

1根据频率分布直方图得,网友强烈关注的频率为

所以强烈关注的人数为,因为强烈关注的女行有10人,所以强烈关注的男性有15人,

所以一般关注的男性有人,一般关注的女性有人,

所以列联表如下:

一般关注

强烈关注

合计

30

15

45

45

10

55

合计

75

25

100

列联表中数据可得:

所以没有的把握认为网友对此事件是否为“强烈关注”与性别有关.

2论坛欲在上述“强烈关注的网友中按性别进行分层抽样,共抽取5人,

则抽中女性网友:人,抽中男性网友:人,

在此5人中随机抽取两名接受访谈,记女性访谈者的人数为

的可能取值为012

的分布列为:

0

1

2

P

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足

1)求数列的通项公式;

2)对任意给定的,是否存在)使成等差数列?若存

在,用分别表示(只要写出一组);若不存在,请说明理由;

3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求在点处的切线方程;

2)求证:上仅有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,)近似地满足函数关系,其中,b为大棚内一天中保温时段的通风量。

1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);

2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,又有四个零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-x3+2x2+2x,若存在满足0≤x0≤3的实数x0,使得曲线yf(x)在点(x0f(x0))处的切线与直线xmy-10=0垂直,则实数m的取值范围是(  )

A. [6,+∞)B. (-∞,2]

C. [2,6]D. [5,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,若点在椭圆C上,则点称为点M的一个椭点”.

1)求椭圆C的标准方程;

2)若直线与椭圆C相交于AB两点,且AB两点的椭点分别为PQ,以PQ为直径的圆经过坐标原点,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线)的两个顶点,点是双曲线上异于的一点,为坐标原点,射线交椭圆于点,设直线的斜率分别为.

(1)若双曲线的渐近线方程是,且过点,求的方程;

(2)在(1)的条件下,如果,求△的面积;

(3)试问:是否为定值?如果是,请求出此定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案