设F1,F2是双曲线C,
-
=1(a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为 .
科目:高中数学 来源: 题型:
如图所示,AB为☉O直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:
![]()
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
查看答案和解析>>
科目:高中数学 来源: 题型:
设圆锥曲线C的两个焦点分别为F1、F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线C的离心率等于( )
(A)
或
(B)
或2
(C)
或2 (D)
或![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
+
=1(a>b>0)的离心率为
.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )
(A)
+
=1 (B)
+
=1
(C)
+
=1 (D)
+
=1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com