精英家教网 > 高中数学 > 题目详情

设圆锥曲线C的两个焦点分别为F1、F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线C的离心率等于(  )

(A)  (B)或2

(C)或2      (D)


D

解析:因为|PF1|∶|F1F2|∶|PF2|=4∶3∶2,

所以设|PF1|=4x,|F1F2|=3x,|PF2|=2x,x>0.

因为|F1F2|=3x=2c,

所以x=c.

若曲线为椭圆,则有2a=|PF1|+|PF2|=6x,即a=3x,

所以离心率e====.

若曲线为双曲线,则有2a=|PF1|-|PF2|=2x,即a=x,

所以离心率e====.故选D.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


函数y=sin2x+sin x-1的值域为(  )

(A)[-1,1]        (B)[-,-1]

(C)[-,1]  (D)[-1,]

查看答案和解析>>

科目:高中数学 来源: 题型:


设F1,F2是双曲线C, -=1(a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知中心在原点,焦点在x轴上的双曲线的离心率为,实轴长为4,则双曲线的方程为    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


若点P是以A(-,0),B(,0)为焦点,实轴长为2的双曲线与圆x2+y2=10的一个交点,则|PA|+|PB|的值为(  )

(A)2 (B)4 (C)4 (D)6

查看答案和解析>>

科目:高中数学 来源: 题型:


已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是(  )

(A) + =1 (B) +=1

(C) +=1  (D) +=1

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆+=1(a>b>0)的左、右顶点分别是A、B,左、右焦点分别是F1、F2,若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为(  )

(A)   (B) (C)   (D) -2

查看答案和解析>>

科目:高中数学 来源: 题型:


已知A、B分别为椭圆+=1(a>b>0)的左、右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,若∠DBP=,则此椭圆的离心率为(  )

(A)   (B) (C)   (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


点A是抛物线C1:y2=2px(p>0)与双曲线C2: -=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于(  )

(A) (B)  (C)  (D)

查看答案和解析>>

同步练习册答案