若点P是以A(-
,0),B(
,0)为焦点,实轴长为2
的双曲线与圆x2+y2=10的一个交点,则|PA|+|PB|的值为( )
(A)2
(B)4
(C)4
(D)6![]()
科目:高中数学 来源: 题型:
命题:“若空间两条直线a,b分别垂直平面α,则a∥b”,学生小夏这样证明:
设a,b与平面α分别相交于A,B,连接AB,
∵a⊥α,b⊥α,AB⊂α,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
这里的证明有两个推理,即:
①⇒②和②⇒③,老师认为小夏的推理证明不正确,这两个推理中不正确的是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a>0,b>0),过其右焦点F且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为( )
(A)
(B)![]()
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
设圆锥曲线C的两个焦点分别为F1、F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线C的离心率等于( )
(A)
或
(B)
或2
(C)
或2 (D)
或![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.
![]()
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线交椭圆于P、Q两点,使PB2⊥QB2,求△PB2Q的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点.
![]()
(1)求r的取值范围;
(2)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com