精英家教网 > 高中数学 > 题目详情
以下四个命题:
①在等差数列{an}中,Sn是其前n项和,则Sn,S2n-Sn,S3n-S2n仍成等差数列;
②在等比数列{an}中,Sn是其前n项和,则Sn,S2n-Sn,S3n-S2n仍成等比数列;
③函数y=x与y=sinx在(-
π
2
π
2
)上的图象有3个不同的交点;
④命题甲:x≠2或y≠3;命题乙:x+y≠5,则甲是乙的必要不充分条件.
其中真命题的序号有
 
考点:命题的真假判断与应用
专题:综合题,推理和证明
分析:①利用等差数列的求和公式,可得①正确;
②利用等比数列的特例判断选项是否正确;
③利用三角函数线与角的弧度数的大小,判断③是否正确;
④我们可先判断x≠2或y≠3时,x+y≠5是否成立,再判断x+y≠5时,x≠2或y≠3是否成立,再根据充要条件的定义即可得到结论.
解答: 解:对于①,利用等差数列的求和公式,可得①正确;
对于②,设an=(-1)n,则S2=0,S4-S2=0,S6-S4=0,∴此数列不是等比数列,故不正确
对于③,根据正弦线|sinx|≤|x|当且仅当x=0取“=”,∴只有一个交点,故③不正确;
对④,若x≠2或y≠3时,如x=1,y=4,则x+y=5,即x+y≠5不成立,故命题甲:x≠2或y≠3⇒命题乙:x+y≠5为假命题;若x=2,y=3成立,则x+y=5一定成立,即x=2,y=3⇒x+y=5为真命题,根据互为逆否命题真假性相同,故命题乙:x+y≠5⇒命题甲:x≠2或y≠3也为真命题,故甲是乙的必要非充分条件,故正确.
故答案为:①④.
点评:本题考查命题的真假判断,考查学生分析解决问题的能力,涉及知识点多,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,|
OB
|=|
OC
|=|
OD
|=1,
OB
+
OC
+
OD
=
0
,A(1,1),则
AD
OB
的取值范围(  )
A、[-1-
2
2
-1]
B、[-
1
2
-
2
,-
1
2
+
2
]
C、[
1
2
-
2
1
2
+
2
]
D、[1-
2
,1+
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D、E分别是△ABC的边AB、AC上的点,且BD=2AD,AE=2EC,点P是线段DE上的任意一点,若
AP
=x
AB
+y
AC
,则xy的最大值为(  )
A、
1
36
B、
1
18
C、
1
12
D、
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

数列an的通项公式为an=n2+n,则数列
1
an
的前10项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数型函数,若牛奶放在0℃的冰箱中,保鲜时间约是192h,而在22℃的厨房中则约是42h
(1)写出保鲜时间y(单位:h)关于储藏温度x(单位:℃)的函数解析式
(2)利用(1)中结论,指出温度在30℃和16℃的保鲜时间(精确到1h)
(3)运用上面的数据,作此函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=n2,求Tn=
1
a1a2
+
1
a2a3
+…+
1
an-1an
+
1
anan+1
的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,AB=4,BC=CD=EA=ED=2,F是线段EB的中点.
(Ⅰ)证明:CF∥平面ADE;
(Ⅱ)证明:BD⊥AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x、y满足x2+2xy+y2+4x2y2=4,则x-y的最大值为(  )
A、
2
B、
3
C、
5
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆内接四边形ABCD的边BC与AD的延长线交于点E,点F在BA的延长线上.
(Ⅰ)若
EC
EB
=
1
3
ED
EA
=
1
2
,求
DC
AB
的值;
(Ⅱ)若EF∥CD,证明:EF2=FA•FB.

查看答案和解析>>

同步练习册答案