精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow{a}$=(2,λ),$\overrightarrow{b}$=(3,4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则λ=-$\frac{3}{2}$.

分析 利用$\overrightarrow{a}$⊥$\overrightarrow{b}$即$\overrightarrow{a}•\overrightarrow{b}$=0,代入坐标计算即可.

解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=0,
又∵$\overrightarrow{a}$=(2,λ),$\overrightarrow{b}$=(3,4),
∴(2,λ)•(3,4)=0,
即:6+4λ=0,
解得:λ=-$\frac{3}{2}$,
故答案为:-$\frac{3}{2}$.

点评 本题考查平面向量数量积的运算,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax2+bx+c在x=0处取得极大值2,其图象在x=1处的切线与直线x-3y+2=0垂直.
(1)求f(x)的解析式;
(2)当x∈(-∞,$\sqrt{3}$]时,不等式xf′(x)≤m-6x2+9x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若复数z=$\frac{a+3i}{1-2i}$(a∈R),且z是纯虚数,则|a+2i|等于2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设A=[2,3],B=(-∞,a),若A⊆B,则a的取值范围是(  )
A.a≥3B.a≥2C.a>3D.a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过原点作曲线y=lnx的切线,则切线斜率为(  )
A.e2B.$\frac{1}{{e}^{2}}$C.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P在CD上,且$\overrightarrow{CP}=\frac{1}{2}\overrightarrow{PD}$,则$\overrightarrow{PA}•\overrightarrow{PB}$=(  )
A.-$\frac{3}{4}$B.-$\frac{10}{9}$C.0D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={-2,-1,0,1,2,3,4},B={-3,-2,-1,1,5},则集合A∩B的子集的个数为(  )
A.6B.7C.8D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+bx2+(b+3)x,在x=1处取极值;
(1)求b及f(x)在区间[-1,1]上的最小值;
(2)若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关,说明你的理由;(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案