精英家教网 > 高中数学 > 题目详情
函数f(x)=|4sin(2x+(
π
6
))|的最小正周期为(  )
A、
π
4
B、
π
2
C、π
D、2π
考点:三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:根据函数y=|Asin(ωx+φ)|的周期为
π
ω
,可得结论.
解答: 解:由于函数y=4sin[2x+(
π
6
)]的最小正周期为
2
=π,
可得函数f(x)=|4sin[2x+(
π
6
)]|的最小正周期为
π
2

故选:B.
点评:本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为
ω
,函数y=|Asin(ωx+φ)|的周期为
π
ω
,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0)且方程f(x)=x无实数根,下列命题:
①方程f[f(x)]=x也一定没有实数根;
②若a>0;则不等式f[f(x)]>x对一切x都成立;
③若a<0则必存在实数x0,使f[f(x0)]>x0
④若a+b+c=0则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号是
 
.(把你认为正确命题的所有序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-sin(2ωx-
π
2
)(ω>0)的图象的一个对称中心到最近的对称轴的距离为
π
4

(1)求ω的值;
(2)求f(x)在区间[π,
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|-2<x≤2},B={x|0≤x≤4},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,n为正整数,对任意的n≥2都有an+2anan-1-an-1=0成立.
(1)求证:数列{
1
an
}
为等差数列;并求{an}的通项公式;
(2)判断a3•a6是否为数列{an}中的项,如果是,是第几项?如果不是,说明理由;
(3)设cn=an•an+1(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

一个复数Z若满足Zn=1,n,m是正整数,m<n时Zm≠1,则称Z为n次本原单位根,则四次原单位根有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求证:B1C⊥平面ABC1D1
(3)设四棱锥B1-ABC1D1的体积为V1,正方体ABCD-A1B1C1D1的体积为V2,求
V1
V2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β是二个不同的平面,m,n是二条不同直线,给出下列命题:
①若m∥n,m⊥α,则n⊥α;
②若m∥α,α∩β=n则m⊥n;
③若m⊥α,m⊥β则α∥β;
④若m⊥α,m?β,则α⊥β,
真命题共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知
OA
=(4,-4),
OB
=(5,1),
OB
OA
方向上的射影数量为|
OM
|,求
MB
的坐标.

查看答案和解析>>

同步练习册答案