精英家教网 > 高中数学 > 题目详情
16.写出命题“?x∈R,x2+x≥0”的否定?x∈R,x2+x<0.

分析 利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以命题“?x∈R,x2+x≥0”的否定“?x∈R,x2+x<0”.
故答案为:?x∈R,x2+x<0.

点评 本题考查命题的否定,特称命题与全称命题的否定关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.f(x)为奇函数,且在(-∞,0)为递增,f(-2)=0,则xf(x)>0的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.命题“?x∈R,x2+x>0”的否定是“?x∈R,x2+x≤0”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>0,b>0,a+b=200,则lga+lgb的最大值为(  )
A.1B.2C.4D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角α的终边上有一点P(1,3),则$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值为(  )
A.-$\frac{2}{5}$B.-$\frac{4}{5}$C.-$\frac{4}{7}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各圆的标准方程:
(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);
(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}前n项和Sn=$\frac{3n-{n}^{2}}{2}$.
(1)求数列{an}的通项公式;
(2)求数列{an•3n-1}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α∈(-$\frac{π}{4}$,0),且sin2α=-$\frac{24}{25}$,则sinα+cosα=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-$\frac{7}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x),g(x)在区间[a,b]上恒有f′(x)≤g′(x),给出下列结论:
①f(x)+f(b)≥g(x)+g(b)
②f(x)-f(b)≥g(x)-g(b)
③f(x)≥g(x)
④f(a)-f(b)≥g(b)-g(a)
其中正确结论的序号为②④.

查看答案和解析>>

同步练习册答案