精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,短轴一个端点到右焦点的距离为
3
,试求椭圆C的标准方程.
考点:椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:由已知条件得
c
a
=
6
3
a=
3
,由此能求出椭圆方程.
解答: 解:∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3

短轴一个端点到右焦点的距离为
3

c
a
=
6
3
a=
3
,解得a=
3
,c=
2

∴b2=3-2=1.
∴椭圆C的标准方程是:
x2
3
+y2=1
点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,注意椭圆简单性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点作斜率为2的直线交抛物线于A、B两点,求AB的长度.(注:若A(x1,y2)、B(x2,y2),弦长AB=
1+k2
(x1+x2)2-4x1x2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=x-(3n-1)x2(其中n∈N*),区间In={x|fn(x)>0}.
(Ⅰ)定义区间(α,β)的长度为β-α,求区间In的长度;
(Ⅱ)把区间In的长度记作数列{an},令bn=an•an+1
(1)求数列{bn}的前n项和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

M是椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)上任意一点,F是椭圆T的右焦点,A为左顶点,B为上顶点,O为坐标原点,如下图所示,已知|MF|的最大值为3+
5
,最小值为3-
5

(1)求椭圆T的标准方程;
(2)求△ABM的面积的最大值S0.若点N(x,y)满足x∈Z,y∈Z,称点N为格点.问椭圆T内部是否存在格点G,使得△ABG的面积S∈(6,S0)?若存在,求出G的坐标;若不存在,请说明理由.(提示:点P(x0,y0)在椭圆T内部?
x02
a2
+
y02
b2
<1).

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
sin245°+cos270°+sin45°cos75°
sin215°+cos245°+sin15°cos45°
sin236°+cos266°+sin36°cos66°
sin2(-15°)+cos215°+sin2(-15°)cos15°
sin2(-45°)+cos2(-15°)+sin(-45°)cos(-15°)
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
11
6
π)+cos(
3
-2x)(x∈R).
(Ⅰ)用“五点法”画出函数f(x)在一个周期内的图象
(Ⅱ)求函数f(x)的最小正周期和单调增区间;
(Ⅲ)在区间[-
π
4
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
5
13
,且α∈(
π
2
,π).
(1)求tanα的值;
(2)求
cos2α
2
sin(α+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,且sinA:sinB:sinC=3:2:4,则cosC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为直线,α,β,γ为平面,有下列三个命题:
(1)a∥α,b∥β,则a∥b;      
(2)a⊥γ,b⊥γ,则a∥b;
(3)a∥b,b?α,则a∥α;     
(4)a⊥b,a⊥α,则b∥α;
其中正确命题是
 

查看答案和解析>>

同步练习册答案