精英家教网 > 高中数学 > 题目详情
13.已知曲线C1的极坐标方程为ρ2-4ρcosθ-4=0,曲线C2和曲线C1关于直线θ=$\frac{π}{4}$对称,求曲线C2的极坐标方程.

分析 根据ρ2=x2+y2,ρsinθ=y,ρcosθ=x,将极坐标方程ρ2-4ρcosθ-4=0和直线θ=$\frac{π}{4}$化为直角坐标方程,利用对称关系求解曲线C2的直角坐标方程,在转化为极坐标方程.

解答 解:由题意:极坐标方程ρ2-4ρcosθ-4=0转化为直角坐标方程为:x2+y2-4y-4=0,
直线θ=$\frac{π}{4}$转化为直角坐标方程为x=y,
∵曲线C2和曲线C1关于直线y=x对称,
∴曲线C2的直角坐标方程为:x2+y2-4x-4=0,
由ρ2=x2+y2,ρsinθ=y,ρcosθ=x,
∴曲线C2极坐标方程为:ρ2-4ρsinθ-4=0.

点评 本题主要考查了极坐标方程与直角坐标方程的互换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若复数z满足(1+i)z=2-i,则复数z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i为虚数单位,复数$z=\frac{i-1}{i+1}$的虚部为(  )
A.1B.0C.iD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点G是△ABC的重心,内角A、B、C所对的边长分别为a、b、c,且$\frac{a}{5}\overrightarrow{GA}+\frac{b}{7}\overrightarrow{GB}+\frac{c}{8}\overrightarrow{GC}=\overrightarrow 0$,则角B的大小是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线${C_1}:\left\{\begin{array}{l}x=1+2t\\ y=2-2t\end{array}\right.$(t为参数,t∈R),曲线${C_2}:\left\{\begin{array}{l}x=2cosθ+2\\ y=2sinθ\end{array}\right.$(θ为参数,θ∈[0,2π]).
(Ⅰ)以O为极点,x轴正半轴为极轴,取相同的长度单位建立极坐标系,求曲线C2的极坐标方程;
(Ⅱ)若曲线C1与曲线C2相交于点A、B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2-x>0},$B=\left\{{x\left|{-\sqrt{3}<x<\sqrt{3}}\right.}\right\}$,则(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U为实数集,集合A={x|x2-2x-3<0},B={x|y=ln(1-x)},则A∩(∁UB)为(  )
A.{x|1≤x<3}B.{x|x<3}C.{x|x≤-1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了更好地让学生适应高考网上阅卷,某学校针对该校20个班级进行了“汉字与英语书法大赛”(每个班级只有一个指导老师),并调查了各班参加该比赛的学生人数,根据所得数据,分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图:
(1)如果从参加比赛的学生人数在25人以上(含25人)的班级中随机选取2个指导老师颁发“参与组织奖”,那么至少有一位来自“参与学生人数在[25,30)内的班级”的指导老师获奖的概率是多少?
(2)如果从参加比赛的学生人数在25人以上(含25人)的班级中随机选取3个指导老师颁发“参与组织奖”,设“参与学生人数在[25,30)内的班级”的指导老师获奖人数为X,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

同步练习册答案