精英家教网 > 高中数学 > 题目详情
4.i为虚数单位,复数$z=\frac{i-1}{i+1}$的虚部为(  )
A.1B.0C.iD.以上都不对

分析 利用复数的运算法则即可得出.

解答 解:复数$z=\frac{i-1}{i+1}$=$\frac{-(1-i)^{2}}{(1+i)(1-i)}$=$\frac{2i}{2}$=i的虚部为1.
故选:A.

点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C的对边分别为a,b,c,若3acosC+b=0,则tanB的最大值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为($\sqrt{2},\frac{π}{4}$),过点M的直线l与曲线C相交于A,B两点,若|MA|=2|MB|,求AB的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在直角梯形ABCD中,AB∥CD,AB=2CD,∠BCD=90.,BC=CD,AE=BE,ED⊥平面ABCD.
(Ⅰ)若M是AB的中点,求证:平面CEM⊥平面BDE;
(Ⅱ)若N为BE的中点,求证:CN∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两人轮流射击,每人每次射击一次,先射中者获胜,射击进行到有人获胜或每人都已射击3次时结束.设甲每次射击命中的概率为$\frac{2}{3}$,乙每次射击命中的概率为$\frac{2}{5}$,且每次射击互不影响,约定由甲先射击. 
(Ⅰ)求甲获胜的概率;
(Ⅱ)求射击结束时甲的射击次数X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设当x=θ时,函数y=3sinx-cosx取得最大值,则sinθ=(  )
A.$-\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$-\frac{{3\sqrt{10}}}{10}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,△ABC是等腰直角三角形,∠bac=90°,点D在边BC的延长线上,且BC=2CD,$AD=\sqrt{5}$.
(1)求$\frac{sin∠CAD}{sin∠D}$的值;
(2)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的极坐标方程为ρ2-4ρcosθ-4=0,曲线C2和曲线C1关于直线θ=$\frac{π}{4}$对称,求曲线C2的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=(1-cosx)•sinx,x∈[-2π,2π]的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案