分析 利用正弦定理、诱导公式化简所给的条件求得 tanC=-4tanA,且tanA>0,再利用两角和的正切公式,基本不等式,求得tanB的最大值.
解答 解:在△ABC中,∵3acosC+b=0,∴C为钝角,利用正弦定理可得 3sinAcosC+sin(A+C)=0,
即3sinAcosC+sinAcosC+cosAsinC=0,∴4sinAcosC=-cosAsinC,
即 tanC=-4tanA,∴tanA>0,
则tanB=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$=$\frac{tanA+tanC}{tanAtanC-1}$=$\frac{-3tanA}{-{4tan}^{2}A-1}$=$\frac{3}{4tanA+\frac{1}{tanA}}$≤$\frac{3}{2\sqrt{4}}$=$\frac{3}{4}$,
当且仅当tanA=$\frac{1}{2}$时,取等号,故tanB的最大值是$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.
点评 本题主要考查正弦定理、诱导公式、两角和的正切公式的应用,基本不等式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [1,+∞) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1]∪(0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com