分析 (1)由已知可求$AC=\frac{{\sqrt{2}}}{2}BC$,$AC=\sqrt{2}CD$,在△ADC中,由正弦定理即可计算得解.
(2)设CD=x,则$AC=\sqrt{2}x$,在△ADC中由余弦定理即可计算得解.
解答 (本题满分为12分)
解:(1)因为△ABC为等腰直角三角形,
所以$AC=\frac{{\sqrt{2}}}{2}BC$,
又BC=2CD,
所以$AC=\sqrt{2}CD$,…(3分)![]()
在△ADC中,由正弦定理得$\frac{CD}{sin∠CAD}=\frac{AC}{sin∠D}$,即$\frac{sin∠CAD}{sin∠D}=\frac{CD}{AC}=\frac{{\sqrt{2}}}{2}$…(6分)
(2)设CD=x,则$AC=\sqrt{2}x$,
在△ADC中:AD2=CD2+AC2-2AC•CDcos∠ACD,即$5={x^2}+2{x^2}+2\sqrt{2}{x^2}•\frac{{\sqrt{2}}}{2}$,
解得:x=1,即CD=1…(12分)
点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $[0,\frac{3π}{4}]$ | B. | $[0,\frac{π}{2})∪[\frac{3π}{4},π)$ | C. | $[\frac{3π}{4},π)$ | D. | $(\frac{π}{2},\frac{3π}{4}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∩B=∅ | B. | A∪B=R | C. | B⊆A | D. | A⊆B |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com