分析 (Ⅰ)消去参数后得到其普通方程,把x=ρcosθ,y=ρsinθ代入可得曲线C2的极坐标方程;
(Ⅱ)法一:利用弦长公式直接求解,利用参数的几何意义求解.法二、运用直线的参数方程求解.
解答 解(Ⅰ)由$\left\{{\begin{array}{l}{x=2cosθ+2}\\{y=2sinθ}\end{array}}\right.$消去参数后得到其普通方程为x2-4x+y2=0,
把x=ρcosθ,y=ρsinθ代入可得ρ=4cosθ.
∴曲线C2的极坐标方程为ρ=4cosθ.
(Ⅱ)由$\left\{{\begin{array}{l}{x=1+2t}\\{y=2-2t}\end{array}}\right.$消去参数后得到其普通方程为x+y-3=0,
由曲线C2可知:以(2,0)为圆心,以2为半径的圆.
那么:圆心到直线C1的距离为$\frac{{|{1×2+1×0-3}|}}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$,
∴弦长$|{AB}|=2\sqrt{{2^2}-{{({\frac{{\sqrt{2}}}{2}})}^2}}=2×\frac{{\sqrt{14}}}{2}=\sqrt{14}$.
解法2:把${C_1}:\left\{{\begin{array}{l}{x=1+2t}\\{y=2-2t}\end{array}}\right.$代入x2-4x+y2=0得8t2-12t+1=0,
则有:${t_1}+{t_2}=\frac{3}{2}$,${t_1}{t_2}=\frac{1}{8}$,
则${|{{t_1}-t}|_2}=\sqrt{{{({{t_1}+{t_2}})}^2}-4{t_1}{t_2}}=\sqrt{{{({\frac{3}{2}})}^2}-4×\frac{1}{8}}=\frac{{\sqrt{7}}}{2}$,
根据直线方程的参数几何意义知$|{AB}|=2\sqrt{2}{|{{t_1}-t}|_2}=\sqrt{14}$.
点评 本题考查了直角坐标方程与极坐标、参数方程之间的转换,考查了参数方程的几何意义.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1008 | B. | 1010 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1190秒 | B. | 1195秒 | C. | 1200秒 | D. | 1205秒 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com