精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=(sinx+cosx)2+cos2x-1.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.

分析 (Ⅰ)直接将x=$\frac{π}{4}$代入计算即可.
(Ⅱ)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;

解答 解:函数f(x)=(sinx+cosx)2+cos2x-1.
那么:f($\frac{π}{4}$)=(sin$\frac{π}{4}$+cos$\frac{π}{4}$)2+cos2×$\frac{π}{4}$-1.
=($\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}$)2+cos$\frac{π}{2}-1$
=1;
(Ⅱ)由函数f(x)=(sinx+cosx)2+cos2x-1.
化简可得:f(x)=2sinxcosx+cos2x
=sin2x+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$,
由$2kπ-\frac{π}{2}$≤2x+$\frac{π}{4}$$≤\frac{π}{2}+2kπ$(k∈Z)是单调递增,
解得:$kπ-\frac{3π}{8}$≤x≤$\frac{π}{8}+kπ$,
∴函数的单调递增区间为[$kπ-\frac{3π}{8}$,$\frac{π}{8}+kπ$](k∈Z).

点评 本题主要考查对三角函数的化简能力,函数性质和同角三角函数关系式的计算.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某程序框图如图所示,若运行该程序后输出S为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线${C_1}:\left\{\begin{array}{l}x=1+2t\\ y=2-2t\end{array}\right.$(t为参数,t∈R),曲线${C_2}:\left\{\begin{array}{l}x=2cosθ+2\\ y=2sinθ\end{array}\right.$(θ为参数,θ∈[0,2π]).
(Ⅰ)以O为极点,x轴正半轴为极轴,取相同的长度单位建立极坐标系,求曲线C2的极坐标方程;
(Ⅱ)若曲线C1与曲线C2相交于点A、B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2-x>0},$B=\left\{{x\left|{-\sqrt{3}<x<\sqrt{3}}\right.}\right\}$,则(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆x2+y2-4x+6y=0的圆心坐标是(  )
A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U为实数集,集合A={x|x2-2x-3<0},B={x|y=ln(1-x)},则A∩(∁UB)为(  )
A.{x|1≤x<3}B.{x|x<3}C.{x|x≤-1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数为纯虚数$z=\frac{a+i}{1+i}$(i虚数单位),则实数a=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$sinθ.
(Ⅰ)将曲线C的极坐标方程化为参数方程:
(Ⅱ)如果过曲线C上一点M且斜率为-$\sqrt{3}$的直线与直线l:y=-x+6交于点Q,那
么当|MQ|取得最小值时,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2+3x≤0},集合B={n|n=2k+1,k∈Z},则A∩B=(  )
A.{-1,1}B.{1,3}C.{-3,-1}D.{-3,-1,1,3}

查看答案和解析>>

同步练习册答案