精英家教网 > 高中数学 > 题目详情
12.已知两直线l1:x+(m+1)y+m-2=0,l2:mx+2y+8=0.
(1)当m为何值时,直线l1与l2垂直;
(2)当m为何值时,直线l1与l2平行.

分析 (1)利用两直线垂直的充要条是 A1A2+B1B2=0,可得 1×m+(1+m)•2=0,由此求得解得m的值.
(2)由两直线平行的充要条件是$\frac{{A}_{1}}{{A}_{2}}$=$\frac{{B}_{1}}{{B}_{2}}$≠$\frac{{C}_{1}}{{C}_{2}}$,由此求得解得m的值.

解答 解:(1)∵两条直线l1:x+(1+m)y+m-2=0,l2:mx+2y+8=0,由两直线垂直的充要条件可得 A1A2+B1B2=0,
即 1×m+(1+m)•2=0,解得m=-$\frac{2}{3}$.
(2)由两直线平行的充要条件可得$\frac{{A}_{1}}{{A}_{2}}$=$\frac{{B}_{1}}{{B}_{2}}$≠$\frac{{C}_{1}}{{C}_{2}}$,
即$\frac{1}{m}$=$\frac{1+m}{2}$≠$\frac{m-2}{8}$,
解得:m=1.

点评 本题主要考查两直线平行的性质,两直线垂直的性质,利用了两直线垂直的充要条是 A1A2+B1B2=0,两直线平行的充要条件是件是$\frac{{A}_{1}}{{A}_{2}}$=$\frac{{B}_{1}}{{B}_{2}}$≠$\frac{{C}_{1}}{{C}_{2}}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知命题p:?x∈[l,2],m≤x2,命题q:?x∈R,x2+mx+l>0
(Ⅰ)写出“¬p命题;
(Ⅱ)若命题p∧q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(sinα+cosα)=$\frac{1}{2}$sin2α(α∈R),则f(sin$\frac{π}{3}$)的值是(  )
A.$\frac{\sqrt{3}}{8}$B.$\frac{1}{8}$C.-$\frac{1}{8}$D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a=(2,m),\overrightarrow b=(-1,m)$,若$(2\overrightarrow a+\overrightarrow b)∥\overrightarrow b$,则$|{\overrightarrow a}|$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)对实数x∈R满足f(x)+f(-x)=0,f(x-1)=f(x+1),若当x∈[0,1)时,f(x)=ax+b(a>0,a≠1),f($\frac{3}{2}$)=1-$\sqrt{2}$.
(1)求x∈[-1,1]时,f(x)的解析式;
(2)求方程f(x)-|log4x|=0的实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知幂函数f(x)的图象经过点(3,$\frac{1}{3}$),则f(x)=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边上一点P落在直线y=2x上,则sin2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a为实数.函数f(x)=x3-ax2+(a2-1)x在(-∞,0)上是增函数.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(-1,2),终点坐标是(2,1),则起点坐标是(3,-1).

查看答案和解析>>

同步练习册答案