| A. | e | B. | 2 | C. | 1 | D. | 0 |
分析 由已知条件结合定积分的性质先求出f($\sqrt{e}$),由此能求出f(f($\sqrt{e}$)).
解答 解:∵f(x)=$\left\{\begin{array}{l}{sin(πx),x≤1}\\{{∫}_{1}^{x}\frac{1}{t}dt,x>1}\end{array}\right.$
∴f($\sqrt{e}$)=${∫}_{1}^{\sqrt{e}}\frac{1}{t}dt$=lnt|${\;}_{1}^{\sqrt{e}}$=ln$\sqrt{e}$-ln1=$\frac{1}{2}$,
∴f(f($\sqrt{e}$))=f($\frac{1}{2}$)=$sin\frac{π}{2}$=1.
故选:C.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 外心 | B. | 内心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4)∪(0,+∞) | B. | (-4,0) | C. | [-4,0] | D. | (-∞,-4]∪[0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com