精英家教网 > 高中数学 > 题目详情
8.设向量$\overrightarrow{a}$=(4,m),$\overrightarrow{b}$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=5.

分析 根据题意,由向量$\overrightarrow{a}$⊥$\overrightarrow{b}$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=4×1+m×(-2)=0,解可得m的值,即可得向量$\overrightarrow{a}$的坐标,进而由向量加法的坐标计算公式可得$\overrightarrow{a}$+$\overrightarrow{b}$的坐标,由模的公式计算可得答案.

解答 解:根据题意,向量$\overrightarrow{a}$=(4,m),$\overrightarrow{b}$=(1,-2),
若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=4×1+m×(-2)=0,解可得m=2,
即向量$\overrightarrow{a}$=(4,2),
则$\overrightarrow{a}$+$\overrightarrow{b}$=(5,0),
则|$\overrightarrow{a}$+$\overrightarrow{b}$|=5;
故答案为:5.

点评 本题考查向量的数量积的坐标运算,涉及向量垂直的判定方法,关键是求出m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=$\sqrt{3}$,c=$\sqrt{2}$,C=$\frac{π}{4}$,则角B=$\frac{5π}{12}$或$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(Ⅰ)求课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定随机选出两名同学分别去做某项试验,求选出的两名同学中恰有一名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下面类比推理:(注:下列集合C为复数集)
①由“若2a<2b,则a<b”,可类比推出:“若a2<b2,则a<b”;
②由“(a+b)c=ac+bc(c≠0)”,可类比推出“$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}(c≠0)$”;
③由“当a,b∈R,若a-b=0,则a=b”,可类比推出“当a,b∈C,若a-b=0,则a=b”;
④由“当a,b∈R,若a-b>0,则a>b”,可类比推出“当a,b∈C,若a-b>0,则a>b”.
其中结论正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}和{bn}满足:a1+b1=0,2a1+22a2+23a3+…+2nan=n2+n,bn+1=$\frac{1}{2}$bn+1,其中n∈N*.
(1)求数列{an}和{bn}的通项公式;
(2)记数列{an}的前n项和为Sn,问是否存在正整数m,使得Sm<3bm成立?若存在,求m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在探究“点P0(x0,y0)到直线l:Ax+By+C=0的距离公式”的数学活动中,小华同学进行了如下思考,并得出以下距离公式:
(Ⅰ)①当A=0时,点P0(x0,y0)到直线l:By+C=0的距离为$\frac{|{By}_{0}+C|}{\sqrt{{B}^{2}}}$;
②当B=0时,点P0(x0,y0)到直线l:Ax+C=0的距离为$\frac{|{Ax}_{0}+C|}{\sqrt{{A}^{2}}}$;
③当A≠0且B≠0时,点P0(x0,y0)到直线l:Ax+By+C=0的距离为$\frac{|{Ax}_{0}+{By}_{0}+C|}{\sqrt{{A}^{2}{+B}^{2}}}$.
(Ⅱ)试证明当A≠0且B≠0时,点P0(x0,y0)到直线l:Ax+By+C=0的距离公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x与y之间的一组数据如下表:
 x 1 2 3 4
 y 2 2 3 5
则y与x的线性回归方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$过点(  )
A.(2.5,2)B.(2.5,3)C.(2,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网格纸上正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )
A.3$\sqrt{2}$B.3$\sqrt{3}$C.4$\sqrt{2}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设随机变量x~N(3,1),若P(X>4)=P,则P(2<X<4)=1-2p.

查看答案和解析>>

同步练习册答案