精英家教网 > 高中数学 > 题目详情
17.如图,网格纸上正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )
A.3$\sqrt{2}$B.3$\sqrt{3}$C.4$\sqrt{2}$D.4$\sqrt{3}$

分析 由多面体的三视图得到该多面体是如图所示的四棱锥S-ABCD,其中底面ABCD是边长为3的正方形,SD⊥底面ABCD,且SD=3,由此能求出最长的棱的长度.

解答 解:由多面体的三视图得到该多面体是如图所示的四棱锥S-ABCD,
其中底面ABCD是边长为3的正方形,SD⊥底面ABCD,且SD=3,
∴最长的棱为SB,
∴最长的棱的长度SB=$\sqrt{B{D}^{2}+S{D}^{2}}$=$\sqrt{{3}^{2}+{3}^{2}+{3}^{2}}$=3$\sqrt{3}$.
故选:B.

点评 本题考查多面体的最长棱的长度的求法,考查三视图、四棱锥等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于$\frac{1}{3}$的概率为(  )
A.$\frac{1}{27}$B.$\frac{2}{3}$C.$\frac{8}{27}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow{a}$=(4,m),$\overrightarrow{b}$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在(x+1)(x-2)5的展开式中,x4项的系数是30(用具体数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知an=2n-1(n∈N*).
(Ⅰ)求证:$\sqrt{a_n}+\sqrt{{a_{n+3}}}<\sqrt{{a_{n+1}}}+\sqrt{{a_{n+2}}}$;
(Ⅱ)若不等式2n+1>nan+n+2在n≥n0时恒成立,求最小正整数n0,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知三棱锥P-ABC的所有顶点都在球O的球面上,且AB=BC=1,AC=CP=PA=$\sqrt{2}$,三棱锥P-ABC的体积为$\frac{1}{6}$,则球O的表面积为11π或3π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=lg5,b=log2$\sqrt{2}$,c=ln3,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1,又A∈C,已知A(4,2$\sqrt{2}$),F(4,0),若由F射至A的光线被双曲线C反射,反射光线通过P(8,k),则k=$3\sqrt{2}$.

查看答案和解析>>

同步练习册答案