精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=-a2lnx+x2-ax(a∈R).
(1)试讨论函数f(x)的单调性;
(2)如果a>0且关于x的方程f(x)=m有两解x1,x2(x1<x2),证明x1+x2>2a.

分析 (1)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;
(2)得$-\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}+$$\frac{1}{a^2}({{x_1}+{x_2}-a})=0$,把$\frac{1}{a^2}({{x_1}+{x_2}-a})$=$\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}$代入(*)式,令$\frac{x_1}{x_2}=t$,得只需证$-\frac{{2({t-1})}}{t+1}+lnt<0$.令$φ(t)=-\frac{{2({t-1})}}{t+1}+lnt$(0<t<1),根据函数的单调性证明即可.

解答 解:(1)由f(x)=-a2lnx+x2-ax,
可知$f'(x)=-\frac{a^2}{x}+2x-a$=$\frac{{2{x^2}-ax-{a^2}}}{x}=\frac{(2x+a)(x-a)}{x}$.
因为函数f(x)的定义域为(0,+∞),所以,
①若a>0,则当x∈(0,a)时,f'(x)<0,函数f(x)单调递减,
当x∈(a,+∞)时,f'(x)>0,函数f(x)单调递增;
②若a=0,则当f'(x)=2x>0在x∈(0,+∞)内恒成立,函数f(x)单调递增;
③若a<0,则当$x∈(0,-\frac{a}{2})$时,f'(x)<0,函数f(x)单调递减,
当$x∈(-\frac{a}{2},+∞)$时,f'(x)>0,函数f(x)单调递增.
(2)要证x1+x2>2a,只需证$\frac{{{x_1}+{x_2}}}{2}>a$.
设g(x)=f'(x)=-$\frac{a^2}{x}+2x-a$,
因为$g'(x)=\frac{a^2}{x^2}+2>0$,
所以g(x)=f'(x)为单调递增函数.
所以只需证$f'({\frac{{{x_1}+{x_2}}}{2}})>f'(a)=0$,
即证$-\frac{{2{a^2}}}{{{x_1}+{x_2}}}+{x_1}+{x_2}-a>0$,
只需证$-\frac{2}{{{x_1}+{x_2}}}+$$\frac{1}{a^2}({{x_1}+{x_2}-a})>0$.(*)
又$-{a^2}ln{x_1}+x_1^2-a{x_1}=m$,$-{a^2}ln{x_2}+x_2^2-a{x_2}=m$,
所以两式相减,并整理,得$-\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}+$$\frac{1}{a^2}({{x_1}+{x_2}-a})=0$.
把$\frac{1}{a^2}({{x_1}+{x_2}-a})$=$\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}$代入(*)式,
得只需证$-\frac{2}{{{x_1}+{x_2}}}+\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}>0$,
可化为$-\frac{{2({\frac{x_1}{x_2}-1})}}{{\frac{x_1}{x_2}+1}}+ln\frac{x_1}{x_2}<0$.
令$\frac{x_1}{x_2}=t$,得只需证$-\frac{{2({t-1})}}{t+1}+lnt<0$.
令$φ(t)=-\frac{{2({t-1})}}{t+1}+lnt$(0<t<1),
则$φ'(t)=-\frac{4}{{{{({t+1})}^2}}}+\frac{1}{t}$=$\frac{{{{({t-1})}^2}}}{{{{({t+1})}^2}t}}>0$,
所以φ(t)在其定义域上为增函数,
所以φ(t)<φ(1)=0.
综上得原不等式成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查转化思想以及换元思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.实数x,y满足x2+y2+xy=1,则x+y的最小值为-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y=\sqrt{x-1}$与y=ln(2-x)的定义域分别为M、N,则M∩N=(  )
A.(1,2]B.[1,2)C.(-∞,1]∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={x|-2<x<3,x∈Z},B={-2,-1,0,1,2,3},则集合A∩B为(  )
A.{-2,-1,0,1,2}B.{-1,0,1,2}C.{-1,0,1,2,3}D.{-2,-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)$(A>0,ω>0,|φ|<\frac{π}{2},x∈R)$的图象如图所示,令g(x)=f(x)+f'(x),则下列关于函数g(x)的说法中不正确的是(  )
A.函数g(x)图象的对称轴方程为$x=kπ-\frac{π}{12}(k∈Z)$
B.函数g(x)的最大值为$2\sqrt{2}$
C.函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行
D.方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.学校高二足球队有男运动员16人,女运动员8人,现用分层抽样的方法从中抽取一个容量为9的样本,则抽取男运动员的人数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-2x≤0},B={y|y=log2(x+2),x∈A},则A∩B为(  )
A.(0,1)B.[0,1]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为偶函数的是(  )
A.f(x)=x-1B.f(x)=x3+xC.f(x)=2x-2-xD.f(x)=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x>y>1,0<a<b<1,则下列各式中一定正确的是(  )
A.ax<byB.ax>byC.$\frac{lnx}{b}<\frac{lny}{a}$D.$\frac{lnx}{b}>\frac{lny}{a}$

查看答案和解析>>

同步练习册答案