精英家教网 > 高中数学 > 题目详情
15.设M={y|y=2x,x∈R},N={y|y=x2,x∈R},则(  )
A.M∩N={(2,4)}B.M∩N={(2,4),(4,16)}C.M=ND.M?N

分析 集合A和集合B都是数集,M是指数函数的值域,N是函数y=x2,x∈R的值域,求出两集合后可得答案

解答 解:集合M={y|y=2x,x∈R}={y|y>0},集合N={y|y=x2,x∈R}={y|y≥0},
则M∩N=M,
∴M?N
故选:D

点评 本题考查了交集及其运算,考查了指数函数和二次函数的值域,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知抛物线x2=2py(p>0)的准线方程为y=-$\frac{1}{2}$,过点M(4,0)作抛物线的切线MA,切点为A(异于点O),直线l过点M与抛物线交于两点P、Q,与直线OA交于点N.
(1)求抛物线的方程;
(2)试问$\frac{|MN|}{|MP|}+\frac{|MN|}{|MQ|}$的值是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线与椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$有相同的焦点,且以$x+\sqrt{2}y=0$为其一条渐近线,则双曲线方程为$\frac{x^2}{4}-\frac{y^2}{2}=1$,过其右焦点且长为4的弦有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=x2-2mx+2,当x∈[-1,+∞)时,f(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二元一次不等式组$\left\{\begin{array}{l}{x+y>0}\\{x-y>0}\\{x≤2}\end{array}\right.$表示的平面区域的形状是等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{AB}⊥\overrightarrow{AC}$,|$\overrightarrow{AB}$|=$\frac{1}{t}$,|$\overrightarrow{AC}$|=t,若点P是△ABC所在平面内一点,且$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{4\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值等于13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于曲线C:x${\;}^{\frac{1}{2}}$+y${\;}^{\frac{1}{2}}$=1,给出下列四个命题:
①曲线C有且仅有一条对称轴;        
②曲线C的长度l满足l>$\sqrt{2}$;
③曲线C上的点到原点距离的最小值为$\frac{\sqrt{2}}{4}$;
④曲线C与两坐标轴所围成图形的面积是$\frac{1}{6}$
上述命题中,真命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,且a1=-1,S3=-9.
(1)求{an}的通项公式;
(2)若等比数列{bn+an}满足:b1+a1=1,b4+a4=8,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与圆(x-2)2+(y-3)2=8相外切,则圆C的方程为(x+1)2+y2=2.

查看答案和解析>>

同步练习册答案