精英家教网 > 高中数学 > 题目详情
已知F1(-1,0),F2(1,0)为椭圆C的焦点,且椭圆C过点P(1,
3
2

(1)求椭圆的方程
(2)过点F1的直线l交椭圆于A,B两点,求△ABF2的面积S的最大值,并求此时直线l的方程.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)当PQ与x轴垂直时,tan∠F1PF2=
4
3
,可得a=2c,结合
a2
c
=4
,求出a,b,c,即可求出椭圆的方程;
(2)设过F1的直线:x=my-1,代入
x2
4
+
y2
3
=1
消去x并整理得(3m2+4)y2-6my-9=0,S△ABF2=
1
2
×2c×|y1-y2|=
12
3
m2+1
+
1
m2+1
,由韦达定理即可用m表示出S△ABF2,换元后根据函数单调性即可求得面积的最大值及此时m值.
解答: 解:(1)当PQ与x轴垂直时,tan∠F1PF2=
4
3

tan∠F1PF2=
2c
b2
a
=
4
3
,得
ac
b2
=
2
3
即a=2c--------------(2分)
a2
c
=4
解得c=1,a=2,b=
3

故所求椭圆C的方程为
x2
4
+
y2
3
=1

(2)由点F1(-1,0),F2(1,0),可设A(x1,y1),B(x2,y2),
设过F1的直线:x=my-1,代入
x2
4
+
y2
3
=1
得(3m2+4)y2-6my-9=0
∴y1+y2=
6m
3m2+4
,y1y2=
-9
3m2+4

∴|y1-y2|=
12
m2+1
3m2+4

S△ABF2=
1
2
×2c×|y1-y2|=
12
3
m2+1
+
1
m2+1

令t=
m2+1
,则t≥1,S△ABF2=
12
3t+
1
t

(3t+
1
t
)
′=3-
1
t2
>0,
∴3t+
1
t
递增,∴(3t+
1
t
)
min=3×1+1=4,当t=1即m=0时取等号,
S△ABF2
12
4
=3,
当m=0时,面积S最大为3,此时直线方程为x=-1.
点评:本题考查直线与圆锥曲线的位置关系及椭圆方程的求解,考查函数思想在解决问题中的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相同,直线l1的参数方程为
x=2+3t
y=1+mt
(t为参数),直线l2的极坐标方程为ρ(3cosθ+4sinθ)=4,直线l1与l2垂直.
(1)求实数m的值;
(2)曲线C的参数方程为
x=3cosθ
y=2sinθ
(θ为参数),曲线C与直线l1交于A,B两点,求点M(2,1)到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A,B两点.若△AOB是等边三角形,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5
3
,b=5,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线 l的参数方程为
x=t+1
y=2t
(t为参数),曲线C的参数方程为
x=2tan2θ
y=2tanθ
(θ为参数).
(Ⅰ)试求直线l和曲线C的普通方程;
(Ⅱ)求直线l和曲线C的公共点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的2条切线,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
-
1
2

(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在[-
π
4
,π]上最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,其左焦点F1到点P(2,1)的距离为
10

(1)求椭圆的方程;
(2)过右焦点F2的直线与椭圆交于不同的两点M、N,则△F1MN内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“若ab=0,则a、b中至少有一个为零”的否命题是
 

查看答案和解析>>

同步练习册答案