精英家教网 > 高中数学 > 题目详情
8.已知直线$l:\sqrt{3}x-y+1=0$,方程x2+y2-2mx-2y+m+3=0表示圆.
(Ⅰ)求实数m的取值范围;
(Ⅱ)当m=-2时,试判断直线l与该圆的位置关系,若相交,求出相应弦长.

分析 (Ⅰ)根据圆的一般式可知半径r=4m2+4-4(m+3)>0,可得实数m的取值范围;
(Ⅱ)当m=-2时,可得圆的圆心为圆心为(-2,1),半径为r=2,利用圆心到直线的距离与半径比较可得答案,利用弦长公式l=$2\sqrt{{r}^{2}-{d}^{2}}$,可得相应的弦长.

解答 解:(Ⅰ)∵方程x2+y2-2mx-2y+m+3=0表示圆,
∴4m2+4-4(m+3)>0⇒m<-1或m>2.
∴实数m的取值范围是{m|m<-1或m>2}
(Ⅱ)当m=-2时,圆的方程可化为x2+y2+4x-2y+1=0,即(x+2)2+(y-1)2=4.
∴圆心为(-2,1),半径为r=2
则:圆心到直线的距离$d=\frac{{|{-2\sqrt{3}-1+1}|}}{{\sqrt{3+1}}}=\sqrt{3}<r$.
∴直线与圆相交.
弦长公式l=$2\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{4-3}$=2.
故得弦长为2.

点评 本题主要考查直线和圆的位置关系的判断,直线被圆截得的弦长的计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.经统计,某医院一个结算窗口每天排队结算的人数及相应的概率如下:
排除人数0--56--1011--1516--2021--2525人以上
概率0.10.150.250.250.20.05
(1)求每天超过20人排队结算的概率;
(2)求2天中,恰有1天出现超过20人排队结算的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算
(1)(5+2i)2•(1-i)
(2)$\frac{7+3i}{3-4i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数g(x)=ex+e-x,其中e是自然对数的底数,正数k满足:存在x0∈[1,+∞),使得g(x0)≤k(-x02+3x0)成立,则k的取值范围为($\frac{1}{2}$(e+$\frac{1}{e}$),+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若关于x的不等式5x2-a≤0的正整数解是1,2,3,则实数a的取值范围是[45,80).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从含有4件正品、2件次品的6件产品中,随机抽取3件,则恰好抽到1件次品的概率(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在四边形ABCD中,AD∥BC,AB=$\sqrt{3}$,AD=1,A=$\frac{5π}{6}$
(1)求sin∠ADB
(2)若∠BDC=$\frac{2π}{3}$,求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的图象如图所示,为了得到f(x)的图象,则只要将g(x)=cos2x的图象(  )
A.向右平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,已知$\overrightarrow{CA}=\overrightarrow a$,$\overrightarrow{CB}=\overrightarrow b$,AD=2DB,用$\overrightarrow a$、$\overrightarrow b$表示$\overrightarrow{DC}$为(  )
A.$\overrightarrow{DC}=-\frac{5}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\overrightarrow{DC}$=$-\frac{1}{2}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\overrightarrow{DC}$=$-\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$D.$\overrightarrow{DC}=-\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$

查看答案和解析>>

同步练习册答案