精英家教网 > 高中数学 > 题目详情
8.已知函数$f(x)=\frac{x}{4}+\frac{a}{x}-lnx-\frac{3}{2}$,其中a∈R
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线$y=\frac{1}{2}x$,求a的值;
(Ⅱ)若f(x)在(0,6)上单调递减,(6,+∞)上单调递增,求a的值.

分析 (Ⅰ)求出函数的导数,计算f′(1),得到关于a的方程,解出即可;(Ⅱ)根据f′(6)=0,得到关于a的方程,解出即可.

解答 解:(Ⅰ)$f'(x)=\frac{1}{4}-\frac{a}{x^2}-\frac{1}{x}$,
由题设知:$f'(1)=-\frac{3}{4}-a=-2$,
解得:$a=\frac{5}{4}$;
(Ⅱ)由题设知,f(x)在x=6处取得极值,
则f'(6)=0,
所以$\frac{1}{4}-\frac{a}{36}-\frac{1}{6}=0$,
解得:a=3.

点评 本题考查了导数的应用以及函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(sinα,cosα),$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}⊥\overrightarrow{b}$,那么sin(α+$\frac{π}{3}$)=(  )
A.-$\frac{1}{2}$或$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.由数字1,3,4,6,x(0≤x≤9,x∈N)五个数字组成没有重复数字的五位数,所有这些五位数各位数字之和为2640,则x=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn.已知a1=1,2Sn=nan+1-$\frac{n(n+1)(n+2)}{3}$,n∈N*
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)  证明:对一切正整数n,有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${∫}_{0}^{1}$(-$\sqrt{1-{x}^{2}}$)dx=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α,β为平面,a,b,c为直线,下列命题正确的是(  )
A.若a⊆α,b∥a,则b∥αB.若α⊥β,α∩β=c,b⊥c,则b⊥β
C.若a⊥b,b⊥c,则a∥cD.若a∩b=A,a⊆α,b⊆α,a∥β,b∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a=sin147°,b=cos55°,c=tan215°,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x3-2x2+x(x>0).
(1)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数G(a)=$\frac{F(a)}{a}$的最小值;
(2)设函数g(x)=1nx-(2x2-4x-t)(t为常数),若使g(x)-m≤x≤f(x)-m在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f'(x)是函数f(x)(x∈R且x≠0)的导函数,当x>0时,xf'(x)-f(x)<0,记a=$\frac{{f({{2^{0.2}}})}}{{{2^{0.2}}}},b=\frac{{f({{{0.2}^2}})}}{{{{0.2}^2}}},c=\frac{{f({{{log}_2}5})}}{{{{log}_2}5}}$,则(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案