分析 在△ABC和△ACD中使用余弦定理求出cosB,cosD的关系,得出四边形的面积S关于sinB,sinD的函数表达式,利用余弦函数的性质求出S的最大值.
解答 解:设AC=x,在△ABC中,由余弦定理得:x2=22+42-2×2×4cosB=20-16cosB,
同理,在△ADC中,由余弦定理得:x2=32+52-2×3×5cosD=34-30cosD,
∴15cosD-8cosB=7,①
又平面四边形ABCD面积为$S=\frac{1}{2}×2×4sinB+\frac{1}{2}×3×5sinD=\frac{1}{2}(8sinB+15sinD)$,
∴8sinB+15sinD=2S,②
①2+②2得:64+225+240(sinBsinD-cosBcosD)=49+4S2,
∴S2=60-60cos(B+D),
当B+D=π时,S取最大值$\sqrt{60+60}$=$2\sqrt{30}$.
故答案为:2$\sqrt{30}$.
点评 本题考查了余弦定理,三角形的面积公式,余弦函数的最值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3] | B. | [3,+∞) | C. | [0,3] | D. | (0,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com