精英家教网 > 高中数学 > 题目详情
椭圆的离心率为(  )
A.B.C.D.
A

试题分析:因为椭圆的标准方程可知,焦点在y轴上,且有a=2,b=1,那么根据a2=b2+c2,解得c=,因此其离心率为e,故选A
点评:解决该试题的关键是弄清楚a,b的值。结合勾股定理得到c的值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,椭圆的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为

(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为, 点在椭圆上, 如果线段的中点轴的
正半轴上, 那么点的坐标是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,左右焦点分别为
(1)若上一点满足,求的面积;
(2)直线于点,线段的中点为,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段的长度的最小值;
(Ⅲ)当线段的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一圆形纸片的圆心为点,点是圆内异于点的一定点,点是圆周上一点.把纸片折叠使点重合,然后展平纸片,折痕与交于点.当点运动时点的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点轴的非负半轴上,点到短
轴端点的距离是4,椭圆上的点到焦点距离的最大值是6.
(1)求椭圆的标准方程和离心率
(2)若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案