精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xOy中,设圆x2+y2-4x=0的圆心为Q.
(1)求过点P(0,-4)且与圆Q相切的直线的方程;
(2)若过点P(0,-4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OA、OB为邻边做平行四边形OACB,问是否存在常数k,使得?OACB为矩形?请说明理由.

分析 (1)设切线方程为:y=kx-4,利用圆心到直线的距离等于半径求出k,即可求过点P(0,-4)且与圆Q相切的直线的方程;
(2)联立$\left\{\begin{array}{l}y=kx-4\\{x^2}+{y^2}-4x=0\end{array}\right.$得(1+k2)x2-(8k+4)x+16=0,利用韦达定理,结合向量知识,即可得出结论.

解答 解:(1)由题意知,圆心Q坐标为(2,0),半径为2,设切线方程为:y=kx-4,
所以,由$\frac{|2k-4|}{{\sqrt{1+{k^2}}}}=2$解得$k=\frac{3}{4}$
所以,所求的切线方程为$y=\frac{3}{4}x-4$,或x=0;
(2)假设存在满足条件的实数k,则设A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}y=kx-4\\{x^2}+{y^2}-4x=0\end{array}\right.$得(1+k2)x2-(8k+4)x+16=0
∵△=16(2k+1)2-64(1+k2)>0,
∴$k>\frac{3}{4}$,
∴${x_1}+{x_2}=\frac{8k+4}{{1+{k^2}}}$,且y1+y2=k(x1+x2)$-8=\frac{4k-8}{{1+{k^2}}}$,
∵$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{OB}$=(x1+x2,y1+y2),∴$|\overrightarrow{OC}{|^2}=({x_1}+{x_2}{)^2}$$+({y_1}+{y_2}{)^2}=\frac{80}{{1+{k^2}}}$,
又$|\overrightarrow{AB}|=2\sqrt{4-\frac{{{{(2k-4)}^2}}}{{1+{k^2}}}}$=$4\sqrt{\frac{4k-3}{{1+{k^2}}}}$,
要使平行四边形OACB矩形,则$|\overrightarrow{OC}{|^2}=\frac{80}{{1+{k^2}}}$=$|\overrightarrow{AB}{|^2}=16(\frac{4k-3}{{1+{k^2}}})$,
所以k=2,∴存在常数k=2,使得平行四边形OACB为矩形.

点评 本题考查直线与圆的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.无穷数列{an}的前n项和为Sn,若对任意的正整数n都有Sn∈{k1,k2,k3,…,k10},则a10的可能取值最多有91个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=2x-1,则f-1(3)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某所学校计划招聘男教师x名,女教师y名,x和y须满足约束条件$\left\{\begin{array}{l}2x-y≥5\\ x-y≤2\\ x<5.\end{array}\right.$则该校招聘的教师人数最多是7名.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-1|+|x+1|-2.
(1)求不等式f(x)≥1的解集;
(2)若关于x的不等式f(x)≥a2-a-2在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱中ABC-DEF,点P,G分别是AD,EF的中点,已知AD⊥平面ABC,AD=EF=3,DE=DF=2.

(Ⅰ)求证:DG⊥平面BCEF;
(Ⅱ)求PE与平面BCEF 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知点$P({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$,将向量$\overrightarrow{OP}$绕原点O按逆时针方向旋转x弧度得到向量$\overrightarrow{OQ}$.
(1)若$x=\frac{π}{4}$,求点Q的坐标;
(2)已知函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,令$g(x)=f(x)•f({x+\frac{π}{3}})$,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《算法统宗》是中国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八節竹一莖,为因盛米不均平;下頭三節三生九,上梢三節貯三升;唯有中間二節竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端3节可盛米3升,要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升.由以上条件,要求计算出这根八节竹筒盛米的容积总共为(  )升.
A.9.0B.9.1C.9.2D.9.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=xlnx+x-k(x-1)在(1,+∞)内有唯一零点x0,若k∈(n,n+1),n∈Z,则n=3.

查看答案和解析>>

同步练习册答案