精英家教网 > 高中数学 > 题目详情
1.无穷数列{an}的前n项和为Sn,若对任意的正整数n都有Sn∈{k1,k2,k3,…,k10},则a10的可能取值最多有91个.

分析 根据数列递推公式可得a10=S10-S9,而S10,S9∈{k1,k2,k3,…,k10},分类讨论即可求出答案.

解答 解:a10=S10-S9,而S10,S9∈{k1,k2,k3,…,k10},
若S10≠S9,则有A102=10×9=90种,
若S10=S9,则有a10=0,
根据分类计数原理可得,共有90+1=91种,
故答案为:91

点评 本题考查了数列的递推公式和分类计数原理,考查了学生的转化能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,A为C的上顶点,P为C第一象限上的一点,连接AP交x轴于点Q,过点Q作C第四象限的一条切线l交y轴于点B,当P为AQ的中点时,|OB|=$\sqrt{6}$.
(1)求椭圆C的标准方程;
(2)连接PO,求四边形OPQB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于5世纪末提出了下面的体积计算的原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面面积.意思是,若两等高的几何体在同高处截面面积总相等,则这两个几何体的体积相等.现有一旋转体D,它是由抛物线y=x2(x≥0),直线y=4及y轴围成的封闭图形如图1所示绕y轴旋转一周形成的几何体,利用祖暅原理,以长方体的一半为参照体(如图2所示)则旋转体D的体积是(  )
A.$\frac{16π}{3}$B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.袋中有5个除了颜色外完全相同的小球,包括2个红球,2个黑球和1个白球,从中随机摸出2个球,则这2个球颜色不同的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线${x^2}-\frac{y^2}{a^2}=1(a>0)$,它的渐近线方程是y=±2x,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是首项等于$\frac{1}{16}$且公比不为1的等比数列,Sn是它的前n项和,满足${S_3}=4{S_2}-\frac{5}{16}$.
(1)求数列{an}的通项公式;
(2)设bn=logaan(a>0且a≠1),求数列{bn}的前n项和Tn的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C:(x-4)2+(y-3)2=4和两点A(-m,0),B(m,0)(m>0),若圆C上至少存在一点P,使得∠APB=90°,则m的取值范围是[3,7].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|lnx>0},B={x|2x<3},则A∩B=(1,log23).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,设圆x2+y2-4x=0的圆心为Q.
(1)求过点P(0,-4)且与圆Q相切的直线的方程;
(2)若过点P(0,-4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OA、OB为邻边做平行四边形OACB,问是否存在常数k,使得?OACB为矩形?请说明理由.

查看答案和解析>>

同步练习册答案