分析 根据题意,得出圆C的圆心C与半径r,设点P(a,b)在圆C上,表示出$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b);利用∠APB=90°,求出m2,根据|OP|表示的几何意义,得出m的取值范围.
解答 解:∵圆C:(x-4)2+(y-3)2=4,
∴圆心C(4,3),半径r=2;
设点P(a,b)在圆C上,则
$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b);
∵∠APB=90°,
∴(a+m)(a-m)+b2=0;
即m2=a2+b2;
∴|OP|=$\sqrt{{a}^{2}+{b}^{2}}$,
∴|OP|的最大值是|OC|+r=5+2=7,最小值是|OC|-r=5-2=3;
∴m的取值范围是[3,7].
故答案为[3,7].
点评 本题考查了平面向量的应用问题,也考查了直线与圆的应用问题,是综合性题目.
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | $[{-\sqrt{2},\sqrt{2}}]$ | C. | [-2,2] | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| y | 0 | 2 | 3 | 2 | 0 | -1 | 0 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com