精英家教网 > 高中数学 > 题目详情
3.如图,正方形ABCD内接于圆O:x2+y2=2,M,N分别为边AB,BC的中点,已知点P(2,0),当正方形ABCD绕圆心O旋转时,$\overrightarrow{PM}•\overrightarrow{ON}$的取值范围是(  )
A.[-1,1]B.$[{-\sqrt{2},\sqrt{2}}]$C.[-2,2]D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

分析 由平面几何知识可得OM=ON,设M(cosα,sinα),用α表示出$\overrightarrow{PM}$和$\overrightarrow{ON}$,得到$\overrightarrow{PM}•\overrightarrow{ON}$关于α的函数,根据三角函数的性质得出答案.

解答 解:圆O的半径r=$\sqrt{2}$,∴正方形的边长为1,
∴OM=ON=1,设M(cosα,sinα),则N(cos($\frac{π}{2}+α$),sin($\frac{π}{2}+α$)),即N(-sinα,cosα),
∴$\overrightarrow{PM}$=(cosα-2,sinα),$\overrightarrow{ON}$=(-sinα,cosα),
∴$\overrightarrow{PM}•\overrightarrow{ON}$=2sinα-sinαcosα+sinαcosα=2sinα,
∵-1≤sinα≤1,∴-2≤2sinα≤2,
故选:C.

点评 本题考查了平面向量的数量积运算,三角函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知离散型随机变量X的分布列为
X012
Pa$\frac{1}{2}$$\frac{1}{4}$
则变量X的数学期望E(X)=1,方差D(X)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,下列命题为真命题的是(  )
A.若m∥α,m∥β,则α∥βB.若α∥β,m?α,n⊥β,则m⊥n
C.若m⊥α,m⊥n,则n∥αD.若α⊥β,m?α,n⊥β,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,A为C的上顶点,P为C第一象限上的一点,连接AP交x轴于点Q,过点Q作C第四象限的一条切线l交y轴于点B,当P为AQ的中点时,|OB|=$\sqrt{6}$.
(1)求椭圆C的标准方程;
(2)连接PO,求四边形OPQB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式|x|•(1-2x)>0的解集是(  )
A.$(-∞,\frac{1}{2})$B.(-∞,0)∪$(0,\frac{1}{2})$C.$(\frac{1}{2},+∞)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列结论:①(sin x)′=-cos x;②($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$;③(log3x)′=$\frac{1}{3lnx}$;④(ln x)′=$\frac{1}{x}$.其中正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知O是△ABC所在平面内一点,向量$\overrightarrow{O{P_1}}、\overrightarrow{O{P_2}}、\overrightarrow{O{P_3}}$满足条件$\overrightarrow{O{P_1}}+\overrightarrow{O{P_2}}+\overrightarrow{O{P_3}}$=$\overrightarrow 0$,且$|{\overrightarrow{O{P_1}}}|=|{\overrightarrow{O{P_2}}}|=|{\overrightarrow{O{P_3}}}$|=1,则△P1P2P3是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于5世纪末提出了下面的体积计算的原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面面积.意思是,若两等高的几何体在同高处截面面积总相等,则这两个几何体的体积相等.现有一旋转体D,它是由抛物线y=x2(x≥0),直线y=4及y轴围成的封闭图形如图1所示绕y轴旋转一周形成的几何体,利用祖暅原理,以长方体的一半为参照体(如图2所示)则旋转体D的体积是(  )
A.$\frac{16π}{3}$B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C:(x-4)2+(y-3)2=4和两点A(-m,0),B(m,0)(m>0),若圆C上至少存在一点P,使得∠APB=90°,则m的取值范围是[3,7].

查看答案和解析>>

同步练习册答案