4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\sqrt{m}+\frac{1}{\sqrt{m}}}\\{y=\sqrt{m}-\frac{1}{\sqrt{m}}}\end{array}\right.$£¨mΪ²ÎÊý£©£¬Ö±Ïßl½»ÇúÏßC1ÓÚA£¬BÁ½µã£»ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑ=4sin£¨¦È-$\frac{¦Ð}{6}$£©£¬µãP£¨¦Ñ£¬$\frac{¦Ð}{3}$£©ÔÚÇúÏßC2ÉÏ£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì¼°µãPµÄÖ±½Ç×ø±ê£»
£¨2£©ÈôÖ±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$ÇÒ¾­¹ýµãP£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©ÏûÈ¥²ÎÊý£¬ÇóÇúÏßC1µÄÆÕͨ·½³Ì£¬Çó³öPµÄ¼«×ø±ê£¬¼´¿ÉÇó³öµãPµÄÖ±½Ç×ø±ê£»
£¨2£©ÈôÖ±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$ÇÒ¾­¹ýµãP£¬Ð´³ö²ÎÊý·½³Ì´úÈëx2-y2=4£¬ÕûÀí¿ÉµÃt2+8t+12=0£¬¼´¿ÉÇó|PA|+|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\sqrt{m}+\frac{1}{\sqrt{m}}}\\{y=\sqrt{m}-\frac{1}{\sqrt{m}}}\end{array}\right.$£¨mΪ²ÎÊý£©£¬ÏûÈ¥m¿ÉµÃx2-y2=4£¬
$¦È=\frac{¦Ð}{3}$£¬¦Ñ=2£¬¡àµãPµÄÖ±½Ç×ø±êΪ£¨1£¬$\sqrt{3}$£©£»
£¨2£©Ö±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$ÇÒ¾­¹ýµãP£¬²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¬
´úÈëx2-y2=4£¬ÕûÀí¿ÉµÃt2+8t+12=0£¬
ÉèA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1¡¢t2£¬Ôòt1+t2=-8£¬t1t2=12£¬
¡à|PA|+|PB|=|t1|+|t2|=|t1+t2|=8

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªm£¬nÊǿռäÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊǿռäÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®Èôm¡Î¦Á£¬m¡Î¦Â£¬Ôò¦Á¡Î¦ÂB£®Èô¦Á¡Î¦Â£¬m?¦Á£¬n¡Í¦Â£¬Ôòm¡Ín
C£®Èôm¡Í¦Á£¬m¡Ín£¬Ôòn¡Î¦ÁD£®Èô¦Á¡Í¦Â£¬m?¦Á£¬n¡Í¦Â£¬Ôòm¡În

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªOÊÇ¡÷ABCËùÔÚÆ½ÃæÄÚÒ»µã£¬ÏòÁ¿$\overrightarrow{O{P_1}}¡¢\overrightarrow{O{P_2}}¡¢\overrightarrow{O{P_3}}$Âú×ãÌõ¼þ$\overrightarrow{O{P_1}}+\overrightarrow{O{P_2}}+\overrightarrow{O{P_3}}$=$\overrightarrow 0$£¬ÇÒ$|{\overrightarrow{O{P_1}}}|=|{\overrightarrow{O{P_2}}}|=|{\overrightarrow{O{P_3}}}$|=1£¬Ôò¡÷P1P2P3ÊÇ£¨¡¡¡¡£©
A£®µÈÑüÈý½ÇÐÎB£®Ö±½ÇÈý½ÇÐÎC£®µÈÑüÖ±½ÇÈý½ÇÐÎD£®µÈ±ßÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÎÒ¹úÄϱ±³¯Ê±ÆÚµÄΰ´ó¿ÆÑ§¼Ò׿•œÔÚÊýѧÉÏÓÐÍ»³ö¹±Ï×£¬ËûÔÚʵ¼ùµÄ»ù´¡ÉÏ£¬ÓÚ5ÊÀ¼ÍÄ©Ìá³öÁËÏÂÃæµÄÌå»ý¼ÆËãµÄÔ­Àí£¨×æ•œÔ­Àí£©£º¡°ÃÝÊÆ¼Èͬ£¬Ôò»ý²»ÈÝÒ족£®¡°ÊÆ¡±ÊǼ¸ºÎÌåµÄ¸ß£¬¡°ÃÝ¡±ÊǽØÃæÃæ»ý£®Òâ˼ÊÇ£¬ÈôÁ½µÈ¸ßµÄ¼¸ºÎÌåÔÚͬ¸ß´¦½ØÃæÃæ»ý×ÜÏàµÈ£¬ÔòÕâÁ½¸ö¼¸ºÎÌåµÄÌå»ýÏàµÈ£®ÏÖÓÐÒ»ÐýתÌåD£¬ËüÊÇÓÉÅ×ÎïÏßy=x2£¨x¡Ý0£©£¬Ö±Ïßy=4¼°yÖáΧ³ÉµÄ·â±ÕͼÐÎÈçͼ1ËùÊ¾ÈÆyÖáÐýתһÖÜÐγɵļ¸ºÎÌ壬ÀûÓÃ׿•œÔ­Àí£¬ÒÔ³¤·½ÌåµÄÒ»°ëΪ²ÎÕÕÌ壨Èçͼ2Ëùʾ£©ÔòÐýתÌåDµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{16¦Ð}{3}$B£®6¦ÐC£®8¦ÐD£®16¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¶¯µãM£¨x£¬y£©Âú×㣺$\sqrt{£¨x+1£©^{2}+{y}^{2}}$+$\sqrt{£¨x-1£©^{2}+{y}^{2}}$=2$\sqrt{2}$£¬MµÄ¹ì¼£ÎªÇúÏßE£®
£¨¢ñ£©ÇóEµÄ·½³Ì£»
£¨¢ò£©¹ýµãF£¨1£¬0£©×÷Ö±Ïßl½»ÇúÏßEÓÚP£¬QÁ½µã£¬½»yÖáÓÚRµã£¬Èô$\overrightarrow{RP}$=¦Ë1$\overrightarrow{PF}$£¬$\overrightarrow{RQ}$=¦Ë2$\overrightarrow{QF}$£¬ÇóÖ¤£º¦Ë1+¦Ë2Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®´üÖÐÓÐ5¸ö³ýÁËÑÕÉ«ÍâÍêÈ«ÏàͬµÄСÇò£¬°üÀ¨2¸öºìÇò£¬2¸öºÚÇòºÍ1¸ö°×Çò£¬´ÓÖÐËæ»úÃþ³ö2¸öÇò£¬ÔòÕâ2¸öÇòÑÕÉ«²»Í¬µÄ¸ÅÂÊΪ$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑ֪˫ÇúÏß${x^2}-\frac{y^2}{a^2}=1£¨a£¾0£©$£¬ËüµÄ½¥½üÏß·½³ÌÊÇy=¡À2x£¬ÔòaµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÔ²C£º£¨x-4£©2+£¨y-3£©2=4ºÍÁ½µãA£¨-m£¬0£©£¬B£¨m£¬0£©£¨m£¾0£©£¬ÈôÔ²CÉÏÖÁÉÙ´æÔÚÒ»µãP£¬Ê¹µÃ¡ÏAPB=90¡ã£¬ÔòmµÄȡֵ·¶Î§ÊÇ[3£¬7]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¶ÔijµØÇø¶ùͯµÄÉí¸ßÓëÌåÖØµÄÒ»×éÊý¾Ý£¬ÎÒÃÇÓÃÁ½ÖÖÄ£ÐÍ¢Ùy=bx+a£¬¢Úy=cedxÄâºÏ£¬µÃµ½»Ø¹é·½³Ì·Ö±ðΪ${\widehaty^{£¨1£©}}=0.24x-8.81$£¬${\widehaty^{£¨2£©}}=1.70{e^{0.022x}}$£¬×÷²Ð²î·ÖÎö£¬Èç±í£º
Éí¸ßx£¨cm£©60708090100110
ÌåÖØy£¨kg£©6810141518
${\widehate^{£¨1£©}}$0.410.011.21-0.190.41
${\widehate^{£¨2£©}}$-0.360.070.121.69-0.34-1.12
£¨¢ñ£©Çó±íÖпոñÄÚµÄÖµ£»
£¨¢ò£©¸ù¾Ý²Ð²î±È½ÏÄ£ÐÍ¢Ù£¬¢ÚµÄÄâºÏЧ¹û£¬¾ö¶¨Ñ¡ÔñÄĸöÄ£ÐÍ£»
£¨¢ó£©²Ð²î´óÓÚ1kgµÄÑù±¾µã±»ÈÏΪÊÇÒì³£Êý¾Ý£¬Ó¦ÌÞ³ý£¬ÌÞ³ýºó¶Ô£¨¢ò£©ËùÑ¡ÔñµÄÄ£ÐÍÖØÐ½¨Á¢»Ø¹é·½³Ì£®
£¨½á¹û±£Áôµ½Ð¡ÊýµãºóÁ½Î»£©
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¨xn£¬yn£©£¬Æä»Ø¹éÖ±Ïßy=bx+aµÄбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ·Ö±ðΪ$\widehatb=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}$£¬$\widehata=\overline y-\widehatb\overline x$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸