精英家教网 > 高中数学 > 题目详情
9.袋中有5个除了颜色外完全相同的小球,包括2个红球,2个黑球和1个白球,从中随机摸出2个球,则这2个球颜色不同的概率为$\frac{4}{5}$.

分析 用列举法确定基本事件的情况,由对立事件的概率计算公式得答案.

解答 解:令红球、黑球、白球分别为A,B,a,b,1,则从袋中任取两球有(A,B),(A,a),(A,b),(A,1),(B,a),(B,b),(B,1),(a,b),(a,1),(b,1),共10种取法,其中两球颜色相同有(a,b),(A,B),共2种取法,由古典概型及对立事件的概率公式可得P=1-$\frac{2}{10}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查了古典概型及其概率计算公式,考查了互斥事件和对立事件的概率计算公式,解答的关键是列举时做到不重不漏,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.圆心坐标是(-1,2),半径长是$\sqrt{5}$的圆的方程为(x+1)2+(y-2)2=5.设直线y=2x与该圆相交于A,B两点,则弦AB的长为$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线y2=2px(p>0)的焦点为F,过抛物线上点P(2,y0)的切线为l,过点P作平行于x轴的直线m,过F作平行于l的直线交m于M,若|PM|=5,则p的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)在[1,1.5),[1.5,2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,曲线C1的参数方程是$\left\{\begin{array}{l}{x=\sqrt{m}+\frac{1}{\sqrt{m}}}\\{y=\sqrt{m}-\frac{1}{\sqrt{m}}}\end{array}\right.$(m为参数),直线l交曲线C1于A,B两点;以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=4sin(θ-$\frac{π}{6}$),点P(ρ,$\frac{π}{3}$)在曲线C2上.
(1)求曲线C1的普通方程及点P的直角坐标;
(2)若直线l的倾斜角为$\frac{2π}{3}$且经过点P,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若方程组$\left\{\begin{array}{l}ax+2y=3\\ 2x+ay=2\end{array}\right.$无解,则实数a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.无穷数列{an}的前n项和为Sn,若对任意的正整数n都有Sn∈{k1,k2,k3,…,k10},则a10的可能取值最多有91个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左顶点为A、中心为O,若椭圆M过点$P(-\frac{1}{2},\frac{1}{2})$,且AP⊥PO.
(1)求椭圆M的方程;
(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;
(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某所学校计划招聘男教师x名,女教师y名,x和y须满足约束条件$\left\{\begin{array}{l}2x-y≥5\\ x-y≤2\\ x<5.\end{array}\right.$则该校招聘的教师人数最多是7名.

查看答案和解析>>

同步练习册答案