18£®ÉèÍÖÔ²M£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó¶¥µãΪA¡¢ÖÐÐÄΪO£¬ÈôÍÖÔ²M¹ýµã$P£¨-\frac{1}{2}£¬\frac{1}{2}£©$£¬ÇÒAP¡ÍPO£®
£¨1£©ÇóÍÖÔ²MµÄ·½³Ì£»
£¨2£©Èô¡÷APQµÄ¶¥µãQÒ²ÔÚÍÖÔ²MÉÏ£¬ÊÔÇó¡÷APQÃæ»ýµÄ×î´óÖµ£»
£¨3£©¹ýµãA×÷Á½ÌõбÂÊ·Ö±ðΪk1£¬k2µÄÖ±Ïß½»ÍÖÔ²MÓÚD£¬EÁ½µã£¬ÇÒk1k2=1£¬ÇóÖ¤£ºÖ±ÏßDEºã¹ýÒ»¸ö¶¨µã£®

·ÖÎö £¨1£©ÀûÓÃAP¡ÍOP£¬¿ÉÖªkAP•kOP=-1£¬Aµã×ø±êΪ£¨-a£¬0£©£¬µÃa£¬Çó³öb£¬È»ºóÇó½âÍÖÔ²·½³Ì£®
£¨2£©Çó³öAPµÄ·½³Ìx-y+1=0£¬Í¨¹ýQÊÇÍÖÔ²MÉϵĵ㣬¹Ê¿ÉÉè$Q£¨cos¦È£¬\frac{{\sqrt{3}}}{3}sin¦È£©$£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ýÇó½â×î´óÖµ¼´¿É£®
£¨3£©Ö±ÏßAD·½³ÌΪy=k1£¨x+1£©£¬´úÈëx2+3y2=1£¬Çó³öD¡¢E×ø±ê£¬µÃµ½Ö±ÏßDEµÄ·½³Ì£¬ÀûÓÃÖ±ÏßϵµÃµ½¶¨µã×ø±ê£®
£¨·¨¶þ£©ÈôDE´¹Ö±ÓÚyÖᣬÔòxE=-xD£¬yE=yD£¬´Ëʱ${k_1}{k_2}=\frac{y_D}{{{x_D}+1}}•\frac{y_E}{{{x_E}+1}}=\frac{{{y_D}^2}}{{1-{x_D}^2}}=\frac{{{y_D}^2}}{{3{y_D}^2}}=\frac{1}{3}$ÓëÌâÉèì¶Ü£®ÈôDE²»´¹Ö±ÓÚyÖᣬ¿ÉÉèDEµÄ·½³ÌΪx=ty+s£¬½«Æä´úÈëx2+3y2=1£¬ÀûÓÃΤ´ï¶¨Àí½áºÏбÂʹØÏµÍƳöDEµÄ·½³ÌΪx=ty-2£¬ÍƳöÖ±ÏßDE¹ý¶¨µã£¨-2£¬0£©£®

½â´ð ½â£º£¨1£©ÓÉAP¡ÍOP£¬¿ÉÖªkAP•kOP=-1£¬
ÓÖAµã×ø±êΪ£¨-a£¬0£©£¬¹Ê$\frac{{\frac{1}{2}}}{{-\frac{1}{2}+a}}•\frac{{\frac{1}{2}}}{{-\frac{1}{2}}}=-1$£¬¿ÉµÃa=1£¬¡­£¨2·Ö£©
ÒòΪÍÖÔ²M¹ýPµã£¬¹Ê$\frac{1}{4}+\frac{1}{{4{b^2}}}=1$£¬¿ÉµÃ${b^2}=\frac{1}{3}$£¬
ËùÒÔÍÖÔ²MµÄ·½³ÌΪ${x^2}+\frac{y^2}{{\frac{1}{3}}}=1$£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡­£¨4·Ö£©
£¨2£©APµÄ·½³ÌΪ$\frac{y-0}{{\frac{1}{2}-0}}=\frac{x+1}{{-\frac{1}{2}+1}}$£¬¼´x-y+1=0£¬
ÓÉÓÚQÊÇÍÖÔ²MÉϵĵ㣬¹Ê¿ÉÉè$Q£¨cos¦È£¬\frac{{\sqrt{3}}}{3}sin¦È£©$£¬¡­£¨6·Ö£©
ËùÒÔ${S_{¡÷APQ}}=\frac{1}{2}¡Á\frac{{\sqrt{2}}}{2}¡Á\frac{{|{cos¦È-\frac{{\sqrt{3}}}{3}sin¦È+1}|}}{{\sqrt{2}}}$¡­£¨8·Ö£©=$\frac{1}{4}|{\frac{{2\sqrt{3}}}{3}cos£¨¦È+\frac{¦Ð}{6}£©+1}|$
µ±$¦È+\frac{¦Ð}{6}=2k¦Ð£¨k¡ÊZ£©$£¬¼´$¦È=2k¦Ð-\frac{¦Ð}{6}£¨k¡ÊZ£©$ʱ£¬S¡÷APQÈ¡×î´óÖµ£®
¹ÊS¡÷APQµÄ×î´óֵΪ$\frac{{\sqrt{3}}}{6}+\frac{1}{4}$£® ¡­£¨10·Ö£©
£¨3£©Ö±ÏßAD·½³ÌΪy=k1£¨x+1£©£¬´úÈëx2+3y2=1£¬¿ÉµÃ$£¨3{k_1}^2+1£©{x^2}+6{k_1}^2x+3{k_1}^2-1=0$£¬${x_A}•{x_D}=\frac{{3{k_1}^2-1}}{{3{k_1}^2+1}}$£¬
ÓÖxA=-1£¬¹Ê${x_D}=\frac{{1-3{k_1}^2}}{{1+3{k_1}^2}}$£¬${y_D}={k_1}£¨\frac{{1-3{k_1}^2}}{{1+3{k_1}^2}}+1£©=\frac{{2{k_1}}}{{1+3{k_1}^2}}$£¬¡­£¨12·Ö£©
ͬÀí¿ÉµÃ${x_E}=\frac{{1-3{k_2}^2}}{{1+3{k_2}^2}}$£¬${y_E}=\frac{{2{k_2}}}{{1+3{k_2}^2}}$£¬ÓÖk1k2=1ÇÒk1¡Ùk2£¬¿ÉµÃ${k_2}=\frac{1}{k_1}$ÇÒk1¡Ù¡À1£¬
ËùÒÔ${x_E}=\frac{{{k_1}^2-3}}{{{k_1}^2+3}}$£¬${y_E}=\frac{{2{k_1}}}{{{k_1}^2+3}}$£¬${k_{DE}}=\frac{{{y_E}-{y_D}}}{{{x_E}-{x_D}}}=\frac{{\frac{{2{k_1}}}{{{k_1}^2+3}}-\frac{{2{k_1}}}{{1+3{k_1}^2}}}}{{\frac{{{k_1}^2-3}}{{{k_1}^2+3}}-\frac{{1-3{k_1}^2}}{{1+3{k_1}^2}}}}=\frac{{2{k_1}}}{{3£¨{k_1}^2+1£©}}$£¬
Ö±ÏßDEµÄ·½³ÌΪ$y-\frac{{2{k_1}}}{{1+3{k_1}^2}}=\frac{{2{k_1}}}{{3£¨{k_1}^2+1£©}}£¨x-\frac{{1-3{k_1}^2}}{{1+3{k_1}^2}}£©$£¬¡­£¨14·Ö£©
Áîy=0£¬¿ÉµÃ$x=\frac{{1-3{k_1}^2}}{{1+3{k_1}^2}}-\frac{{3£¨{k_1}^2+1£©}}{{1+3{k_1}^2}}=-2$£®
¹ÊÖ±ÏßDE¹ý¶¨µã£¨-2£¬0£©£® ¡­£¨16·Ö£©
£¨·¨¶þ£©ÈôDE´¹Ö±ÓÚyÖᣬÔòxE=-xD£¬yE=yD£¬
´Ëʱ${k_1}{k_2}=\frac{y_D}{{{x_D}+1}}•\frac{y_E}{{{x_E}+1}}=\frac{{{y_D}^2}}{{1-{x_D}^2}}=\frac{{{y_D}^2}}{{3{y_D}^2}}=\frac{1}{3}$ÓëÌâÉèì¶Ü£®
ÈôDE²»´¹Ö±ÓÚyÖᣬ¿ÉÉèDEµÄ·½³ÌΪx=ty+s£¬½«Æä´úÈëx2+3y2=1£¬
¿ÉµÃ£¨t2+3£©y2+2tsy+s2-1=0£¬¿ÉµÃ${y_D}+{y_E}=\frac{-2ts}{{{t^2}+3}}£¬{y_D}•{y_E}=\frac{{{s^2}-1}}{{{t^2}+3}}$£¬¡­£¨12·Ö£©
ÓÖ${k_1}{k_2}=\frac{y_D}{{{x_D}+1}}•\frac{y_E}{{{x_E}+1}}=\frac{{{y_D}{y_E}}}{{£¨t{y_D}+s+1£©£¨t{y_E}+s+1£©}}=1$£¬
¿ÉµÃ$£¨{t^2}-1£©{y_D}{y_E}+t£¨s+1£©£¨{y_D}+{y_E}£©+{£¨s+1£©^2}=0$£¬¡­£¨14·Ö£©
¹Ê$£¨{t^2}-1£©\frac{{{s^2}-1}}{{{t^2}+3}}+t£¨s+1£©\frac{-2ts}{{{t^2}+3}}+{£¨s+1£©^2}=0$£¬
¿ÉµÃs=-2»ò-1£¬ÓÖDE²»¹ýAµã£¬¼´s¡Ù-1£¬¹Ês=-2£®
ËùÒÔDEµÄ·½³ÌΪx=ty-2£¬¹ÊÖ±ÏßDE¹ý¶¨µã£¨-2£¬0£©£® ¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁнáÂÛ£º¢Ù£¨sin x£©¡ä=-cos x£»¢Ú£¨$\frac{1}{x}$£©¡ä=$\frac{1}{{x}^{2}}$£»¢Û£¨log3x£©¡ä=$\frac{1}{3lnx}$£»¢Ü£¨ln x£©¡ä=$\frac{1}{x}$£®ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®´üÖÐÓÐ5¸ö³ýÁËÑÕÉ«ÍâÍêÈ«ÏàͬµÄСÇò£¬°üÀ¨2¸öºìÇò£¬2¸öºÚÇòºÍ1¸ö°×Çò£¬´ÓÖÐËæ»úÃþ³ö2¸öÇò£¬ÔòÕâ2¸öÇòÑÕÉ«²»Í¬µÄ¸ÅÂÊΪ$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîµÈÓÚ$\frac{1}{16}$ÇÒ¹«±È²»Îª1µÄµÈ±ÈÊýÁУ¬SnÊÇËüµÄǰnÏîºÍ£¬Âú×ã${S_3}=4{S_2}-\frac{5}{16}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=logaan£¨a£¾0ÇÒa¡Ù1£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTnµÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÔ²C£º£¨x-4£©2+£¨y-3£©2=4ºÍÁ½µãA£¨-m£¬0£©£¬B£¨m£¬0£©£¨m£¾0£©£¬ÈôÔ²CÉÏÖÁÉÙ´æÔÚÒ»µãP£¬Ê¹µÃ¡ÏAPB=90¡ã£¬ÔòmµÄȡֵ·¶Î§ÊÇ[3£¬7]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®$\lim_{n¡ú¡Þ}\frac{{{2^{n+1}}+{3^{n+1}}}}{{{2^n}+{3^n}}}$=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª¼¯ºÏA={x|lnx£¾0}£¬B={x|2x£¼3}£¬ÔòA¡ÉB=£¨1£¬log23£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄÆÕͨ·½³ÌΪx2-4x+y2-2y=0£¬µãPµÄ¼«×ø±êΪ£¨2$\sqrt{2}$£¬$\frac{7¦Ð}{4}$£©£®
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©Èô½«Ö±ÏßlÏòÓÒÆ½ÒÆ2¸öµ¥Î»µÃµ½Ö±Ïßl¡ä£¬Éèl¡äÓëCÏཻÓÚA£¬BÁ½µã£¬Çó¡÷PABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÅ×ÎïÏߦ££ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£®Èô¹ýµãFÇÒбÂÊΪ1µÄÖ±ÏßÓëÅ×ÎïÏߦ£ÏཻÓÚM£¬NÁ½µã£¬ÓÖ¡÷MONµÄÃæ»ýΪ${S_{¡÷MON}}=\frac{{\sqrt{2}}}{2}$£®
£¨1£©ÇóÅ×ÎïÏߦ£µÄ·½³Ì£»
£¨2£©ÈôµãPÊÇÅ×ÎïÏߦ£Éϵ͝µã£¬µãB£¬CÔÚyÖáÉÏ£¬Ô²£¨x-1£©2+y2=1ÄÚÇÐÓÚ¡÷PBC£¬Çó¡÷PBCµÄÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸