分析 (1)根据直线l的参数方程,消参可得直线l的普通方程,根据曲线C的普通方程,将x=ρcosθ,y=ρsinθ,代入化简,可得曲线C的极坐标方程;
(2)由题意得l′的普通方程为y=x,所以其极坐标方程为θ=$\frac{π}{4}$,联立C的极坐标方程,可得弦长,求出弦心距,可得三角形面积.
解答 解:(1)根据题意,直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$,(t为参数)的普通方程为x-y+2=0,…(2分)
曲线C的普通方程为x2-4x+y2-2y=0,极坐标方程为ρ=4cosθ+2sinθ(ρ∈R)…(5分)
(2)将直线l向右平移2个单位得到直线l′,
则l′的普通方程为y=x,
所以其极坐标方程为θ=$\frac{π}{4}$,
代入ρ=4cosθ+2sinθ得:ρ=3$\sqrt{2}$,
故|AB|=3$\sqrt{2}$,
因为OP⊥l′,所以点P到直线l′的距离为2$\sqrt{2}$,
所以△PAB的面积S=$\frac{1}{2}$×3$\sqrt{2}$×2$\sqrt{2}$=6…(10分)
点评 本题考查的知识点是简单曲线的极坐标方程,参数方程与普通方程的互化,三角形面积公式,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com