精英家教网 > 高中数学 > 题目详情
7.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$,(t为参数),曲线C的普通方程为x2-4x+y2-2y=0,点P的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$).
(1)求直线l的普通方程和曲线C的极坐标方程;
(2)若将直线l向右平移2个单位得到直线l′,设l′与C相交于A,B两点,求△PAB的面积.

分析 (1)根据直线l的参数方程,消参可得直线l的普通方程,根据曲线C的普通方程,将x=ρcosθ,y=ρsinθ,代入化简,可得曲线C的极坐标方程;
(2)由题意得l′的普通方程为y=x,所以其极坐标方程为θ=$\frac{π}{4}$,联立C的极坐标方程,可得弦长,求出弦心距,可得三角形面积.

解答 解:(1)根据题意,直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$,(t为参数)的普通方程为x-y+2=0,…(2分)
曲线C的普通方程为x2-4x+y2-2y=0,极坐标方程为ρ=4cosθ+2sinθ(ρ∈R)…(5分)
(2)将直线l向右平移2个单位得到直线l′,
则l′的普通方程为y=x,
所以其极坐标方程为θ=$\frac{π}{4}$,
代入ρ=4cosθ+2sinθ得:ρ=3$\sqrt{2}$,
故|AB|=3$\sqrt{2}$,
因为OP⊥l′,所以点P到直线l′的距离为2$\sqrt{2}$,
所以△PAB的面积S=$\frac{1}{2}$×3$\sqrt{2}$×2$\sqrt{2}$=6…(10分)

点评 本题考查的知识点是简单曲线的极坐标方程,参数方程与普通方程的互化,三角形面积公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)在[1,1.5),[1.5,2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左顶点为A、中心为O,若椭圆M过点$P(-\frac{1}{2},\frac{1}{2})$,且AP⊥PO.
(1)求椭圆M的方程;
(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;
(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a>0,若对于任意的x>0,都有$\frac{1}{a}-\frac{1}{x}≤2x$,则a的取值范围是[$\frac{\sqrt{2}}{4},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=2x-1,则f-1(3)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义在R上的奇函数f(x)满足$f({\frac{3}{2}-x})=f(x),f({-2})=-3$,Sn为数列{an}的前n项和,且Sn=2an+n,则f(a5)+f(a6)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某所学校计划招聘男教师x名,女教师y名,x和y须满足约束条件$\left\{\begin{array}{l}2x-y≥5\\ x-y≤2\\ x<5.\end{array}\right.$则该校招聘的教师人数最多是7名.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱中ABC-DEF,点P,G分别是AD,EF的中点,已知AD⊥平面ABC,AD=EF=3,DE=DF=2.

(Ⅰ)求证:DG⊥平面BCEF;
(Ⅱ)求PE与平面BCEF 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1,若一组斜率为$\frac{1}{4}$的平行直线被椭圆C所截线段的中点均在直线l上,则l的斜率为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案