精英家教网 > 高中数学 > 题目详情
15.设a>0,若对于任意的x>0,都有$\frac{1}{a}-\frac{1}{x}≤2x$,则a的取值范围是[$\frac{\sqrt{2}}{4},+∞$).

分析 由对于任意的x>0,都有$\frac{1}{a}-\frac{1}{x}≤2x$,转化为$\frac{1}{a}≤(\frac{1}{x}+2x)_{min}$,求出a的取值

解答 解:对于任意的x>0,都有$\frac{1}{a}-\frac{1}{x}≤2x$,得到$\frac{1}{a}≤(\frac{1}{x}+2x)_{min}$,因为$\frac{1}{x}+2x≥2\sqrt{2}$,所以$\frac{1}{a}≤2\sqrt{2}$,解得a$≥\frac{\sqrt{2}}{4}$;
故答案为:[$\frac{\sqrt{2}}{4},+∞$).

点评 本题考查了恒成立的问题以及利用基本不等式求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=mx(m>0)的焦点为F,点A(0,-$\sqrt{3}$),若射线FA与抛物线C相交于点M,与其准线相交于点D,且|FM|:|MD|=1:2,则点M的纵坐标为(  )
A.-$\frac{1}{3}$B.-$\frac{\sqrt{3}}{3}$C.-$\frac{2}{3}$D.-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是首项等于$\frac{1}{16}$且公比不为1的等比数列,Sn是它的前n项和,满足${S_3}=4{S_2}-\frac{5}{16}$.
(1)求数列{an}的通项公式;
(2)设bn=logaan(a>0且a≠1),求数列{bn}的前n项和Tn的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\lim_{n→∞}\frac{{{2^{n+1}}+{3^{n+1}}}}{{{2^n}+{3^n}}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|lnx>0},B={x|2x<3},则A∩B=(1,log23).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入g(n)是生产时间n个月的二次函数g(n)=n2+kn(k是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.
(1)求前8个月的累计生产净收入g(8)的值;
(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$,(t为参数),曲线C的普通方程为x2-4x+y2-2y=0,点P的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$).
(1)求直线l的普通方程和曲线C的极坐标方程;
(2)若将直线l向右平移2个单位得到直线l′,设l′与C相交于A,B两点,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,A(a,0),b(0,b),D(-a,0),△ABD的面积为$2\sqrt{3}$.
(1)求椭圆C的方程;
(2)如图,设P(x0,y0)是椭圆C在第二象限的部分上的一点,且直线PA与y轴交于点M,直线PB与 x轴交于点N,求四边形ABNM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\frac{{2\sqrt{|x|}}}{{{e^{x-1}}}}$,若关于x的方程f2(x)-mf(x)+m-1=0恰好有3个不相等的实根,则m的取值范围是(-∞,1)∪{2}.

查看答案和解析>>

同步练习册答案