精英家教网 > 高中数学 > 题目详情
19.某所学校计划招聘男教师x名,女教师y名,x和y须满足约束条件$\left\{\begin{array}{l}2x-y≥5\\ x-y≤2\\ x<5.\end{array}\right.$则该校招聘的教师人数最多是7名.

分析 由题意由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件$\left\{\begin{array}{l}2x-y≥5\\ x-y≤2\\ x<5.\end{array}\right.$,又不等式组画出可行域,又要求该校招聘的教师人数最多令z=x+y,则题意求解在可行域内使得z取得最大.

解答 解:由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件$\left\{\begin{array}{l}2x-y≥5\\ x-y≤2\\ x<5.\end{array}\right.$,画出可行域为:

对于需要求该校招聘的教师人数最多,
令z=x+y?y=-x+z 则题意转化为,在可行域内任意去x,y且为整数使得目标函数代表的斜率为定值-1,
截距最大时的直线为过$\left\{\begin{array}{l}{x=4}\\{2x-y-5=0}\end{array}\right.$⇒(4,3)时使得目标函数取得最大值为:z=7.
故答案为:7.

点评 此题考查了线性规划的应用,还考查了学生的数形结合的求解问题的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.袋中有5个除了颜色外完全相同的小球,包括2个红球,2个黑球和1个白球,从中随机摸出2个球,则这2个球颜色不同的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|lnx>0},B={x|2x<3},则A∩B=(1,log23).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$,(t为参数),曲线C的普通方程为x2-4x+y2-2y=0,点P的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$).
(1)求直线l的普通方程和曲线C的极坐标方程;
(2)若将直线l向右平移2个单位得到直线l′,设l′与C相交于A,B两点,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对某地区儿童的身高与体重的一组数据,我们用两种模型①y=bx+a,②y=cedx拟合,得到回归方程分别为${\widehaty^{(1)}}=0.24x-8.81$,${\widehaty^{(2)}}=1.70{e^{0.022x}}$,作残差分析,如表:
身高x(cm)60708090100110
体重y(kg)6810141518
${\widehate^{(1)}}$0.410.011.21-0.190.41
${\widehate^{(2)}}$-0.360.070.121.69-0.34-1.12
(Ⅰ)求表中空格内的值;
(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;
(Ⅲ)残差大于1kg的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.
(结果保留到小数点后两位)
附:对于一组数据(x1,y1),(x2,y2),…(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘法估计分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,A(a,0),b(0,b),D(-a,0),△ABD的面积为$2\sqrt{3}$.
(1)求椭圆C的方程;
(2)如图,设P(x0,y0)是椭圆C在第二象限的部分上的一点,且直线PA与y轴交于点M,直线PB与 x轴交于点N,求四边形ABNM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,设圆x2+y2-4x=0的圆心为Q.
(1)求过点P(0,-4)且与圆Q相切的直线的方程;
(2)若过点P(0,-4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OA、OB为邻边做平行四边形OACB,问是否存在常数k,使得?OACB为矩形?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线Γ:y2=2px(p>0)的焦点为F.若过点F且斜率为1的直线与抛物线Γ相交于M,N两点,又△MON的面积为${S_{△MON}}=\frac{{\sqrt{2}}}{2}$.
(1)求抛物线Γ的方程;
(2)若点P是抛物线Γ上的动点,点B,C在y轴上,圆(x-1)2+y2=1内切于△PBC,求△PBC的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知F点为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,以点F为圆心的圆于C的渐近线相切,且与C交于A,B两点,若AF⊥x轴,则C的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案