精英家教网 > 高中数学 > 题目详情
18.用诱导公式求下列三角值:
(1)cos(-$\frac{17π}{4}$);                          
(2)sin(-1574°);
(3)sin(-2160°52′);
(4)cos(-1751°36′)
(5)cos1615°8′;
(6)sin(-$\frac{26}{3}π$).

分析 直接利用诱导公式化简取值即可.

解答 解:(1)cos(-$\frac{17π}{4}$)=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$;             
(2)sin(-1574°)=-sin134°=-sin46°;
(3)sin(-2160°52′)=-sin0°52′;      
(4)cos(-1751°36′)=cos48°8′;
(5)cos1 615°8′=-cos4°52′;            
(6)sin(-$\frac{26}{3}$π)=-sin$\frac{2π}{3}$=-$\frac{\sqrt{3}}{2}$.

点评 本题考查三角函数的化简求值,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知sinα=3-a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知cos($\frac{π}{4}$+α)=$\frac{5}{13}$,cos($\frac{π}{4}$-β)=$\frac{3}{5}$,α∈(-$\frac{π}{4}$,$\frac{π}{4}$),β∈($\frac{π}{4}$,$\frac{3π}{4}$).
(1)求sinα的值;
(2)求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正方体的棱长为1,C、D、M分别为三条棱的中点,A、B是顶点,那么点M到截面ABCD的距离是(  ) 
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.幂函数f(x)=xα(α为常数)的图象经过点($\frac{1}{2},\frac{1}{4}$)
(1)求函数f(x)的解析式;
(2)x∈[-1,1]时,函数y=f(x)-2ax+3的最小值为g(a),求g(a)的表达式;
(3)是否存在实数m>n>0,使得a∈[n,m]时,总有g(a)∈[n2,m2]成立,若存在,求出m,n的值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数字“2015”中,各位数字相加和为8,称该数为“如意四位数”,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的“如意四位数”有(  )个.
A.21B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=f(x)的图象关于点(a,b)对称的充要条件是f(a+x)+f(a-x)=2b(或f(x)+f(2a-x)=2b).如果函数y=f(x)的图象关于点(a,b)对称,则称点(a,b)为“中心点”,称函数y=f(x)为“准奇函数”.现有如下命题:
①若函数f(x)在R上的“中心点”为(a,f(a))则函数F(x)=f(x+a)-f(a)为R上的奇函数.
②若定义在R上的偶函数y=f(x)的“中心点”为(1,2),则方程f(x)=2在[-10,10]上至少有10个根.
③已知函数f(x)是定义在R上的增函数,点(1,0)为函数y=f(x-1)的“中心点”,若不等式f(m2-6m+21)+f(n2-8n)<0对任意的m,n∈R恒成立,则当m>3时,13<m2+n2<49.
其中正确的命题是①②③.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=$\frac{a+lnx}{x}$,若曲线f(x)在点(e,f(e))处的切线与直线e2x-y+e=0垂直(其中e为自然对数的底数).
(1)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;
(2)求证:当x>1时,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,函数g(x)=f(x)-2x恰有三个不同的零点,则实数a的取值范围是(  )
A.[-1,1)B.[0,2]C.[-2,2)D.[-1,2)

查看答案和解析>>

同步练习册答案