| A. | [-1,1) | B. | [0,2] | C. | [-2,2) | D. | [-1,2) |
分析 化简g(x)=f(x)-2x=$\left\{\begin{array}{l}{-x+2,}&{x>a}\\{{x}^{2}+3x+2,}&{x≤a}\end{array}\right.$,而方程-x+2=0的解为2,方程x2+3x+2=0的解为-1,-2;故只需$\left\{\begin{array}{l}{a<2}\\{-1≤a}\\{-2≤a}\end{array}\right.$,从而可得答案.
解答 解:∵f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,
∴g(x)=f(x)-2x=$\left\{\begin{array}{l}{-x+2,}&{x>a}\\{{x}^{2}+3x+2,}&{x≤a}\end{array}\right.$,
而方程-x+2=0的解为2,方程x2+3x+2=0的解为-1,-2;
若函数g(x)=f(x)-2x恰有三个不同的零点,
则$\left\{\begin{array}{l}{a<2}\\{-1≤a}\\{-2≤a}\end{array}\right.$,解得-1≤a<2,即实数a的取值范围是[-1,2).
故选:D.
点评 本题考查了分段函数的化简与函数零点的判断,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3<m<6 | B. | 1<m<3 | C. | 0<m<1 | D. | -1<m<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,5,6} | B. | {1,4,5,6} | C. | {2,3,4} | D. | {1,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}+\frac{1}{2}i$ | B. | $\frac{1}{2}+\frac{5}{2}i$ | C. | $\frac{3}{2}+\frac{1}{2}i$ | D. | $\frac{3}{2}+\frac{5}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | $\frac{9}{4}$ | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{5}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com