精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,函数g(x)=f(x)-2x恰有三个不同的零点,则实数a的取值范围是(  )
A.[-1,1)B.[0,2]C.[-2,2)D.[-1,2)

分析 化简g(x)=f(x)-2x=$\left\{\begin{array}{l}{-x+2,}&{x>a}\\{{x}^{2}+3x+2,}&{x≤a}\end{array}\right.$,而方程-x+2=0的解为2,方程x2+3x+2=0的解为-1,-2;故只需$\left\{\begin{array}{l}{a<2}\\{-1≤a}\\{-2≤a}\end{array}\right.$,从而可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,
∴g(x)=f(x)-2x=$\left\{\begin{array}{l}{-x+2,}&{x>a}\\{{x}^{2}+3x+2,}&{x≤a}\end{array}\right.$,
而方程-x+2=0的解为2,方程x2+3x+2=0的解为-1,-2;
若函数g(x)=f(x)-2x恰有三个不同的零点,
则$\left\{\begin{array}{l}{a<2}\\{-1≤a}\\{-2≤a}\end{array}\right.$,解得-1≤a<2,即实数a的取值范围是[-1,2).
故选:D.

点评 本题考查了分段函数的化简与函数零点的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.用诱导公式求下列三角值:
(1)cos(-$\frac{17π}{4}$);                          
(2)sin(-1574°);
(3)sin(-2160°52′);
(4)cos(-1751°36′)
(5)cos1615°8′;
(6)sin(-$\frac{26}{3}π$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=|mx|-|x-n|(0<n<1+m),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为(  )
A.3<m<6B.1<m<3C.0<m<1D.-1<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图△ABC是圆O的内接三角形,PA是圆O的切线,A为切点,PB交AC于点E,交圆O于点D,若PE=PA,∠ABC=45°,且PD=2,BD=6,则AC=5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合U={1,2,3,4,5,6},A={2,3},B={x∈Z|x2-6x+5<0},则∁U(A∪B)=(  )
A.{1,5,6}B.{1,4,5,6}C.{2,3,4}D.{1,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sin(α-$\frac{π}{6}$)=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),求sin(2α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z满足(z+i)(1-i)=2+i,则z=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}+\frac{5}{2}i$C.$\frac{3}{2}+\frac{1}{2}i$D.$\frac{3}{2}+\frac{5}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设P为双曲线C:x2-y2=1上一点,F1、F2分别为双曲线C的左右焦点,若cos∠F1PF2=$\frac{1}{3}$,则△PF1F2的外接圆的半径为(  )
A.$\frac{3}{2}$B.3C.$\frac{9}{4}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x∈{1,2,3,4,5,6,7,8},执行如图所示的程序框图,则输出的x不小于121的概率为(  )
A.$\frac{3}{4}$B.$\frac{5}{8}$C.$\frac{7}{8}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案