精英家教网 > 高中数学 > 题目详情
1.已知sinα=3-a,求a的取值范围.

分析 首先根据正弦函数的图象和性质确定和建立不等式组,进一步解不等式求出结果.

解答 解:根据正弦函数的图象性质:y=sinx(x∈R)
得到:-1≤y≤1.
所以:-1≤3-a≤1,
解得:2≤a≤4
故a的曲子范围为:2≤a≤4

点评 本题考查的知识要点:正弦函数的图象和性质的应用,及不等式组的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知A、B两监测点间距离为3400米,且两点到同一爆炸声的时间差为6s,且B处的声强是A处声强的4倍,声强与距离的平方成反比,求爆炸点P到两监测点中点Q的距离(精确到1m,声速为340m/s).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知f(x)=ex-alnx-a,其中常数a>0.
(1)当a=e时,求函数f(x)的极值;
(2)若函数y=f(x)有两个零点x1,x2(0<x1<x2),求证:$\frac{1}{a}<{x_1}<1<{x_2}$<a;
(3)求证:e2x-2-ex-1lnx-x≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,BC边上的垂直平分线与BC,AC分别交于点D,M,若$\overrightarrow{AM}•\overrightarrow{BC}$=6,且|$\overrightarrow{AB}$|=2.则|$\overrightarrow{AC}$|=(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下面数列的变化规律,写出的第10项$\frac{1}{21×23}$.
-$\frac{1}{3×5}$,$\frac{1}{5×7}$,-$\frac{1}{7×9}$,$\frac{1}{9×11}$,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,a1=1,a5=2a4,且前n项和为Sn,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)设cn=(Sn+1)(nbn-λ),若数列{cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=|x-1|+a|x2-2|+|x3-3|(x∈R)有最小值,则a的取值范围是(  )
A.B.[-2,2]C.[2,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求数列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…$\frac{1}{(2n-1)(2n+1)}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用诱导公式求下列三角值:
(1)cos(-$\frac{17π}{4}$);                          
(2)sin(-1574°);
(3)sin(-2160°52′);
(4)cos(-1751°36′)
(5)cos1615°8′;
(6)sin(-$\frac{26}{3}π$).

查看答案和解析>>

同步练习册答案