【题目】已知(
+1)m=
xm+ym , 其中m,xm , ym∈N* .
(1)求证:ym为奇数;
(2)定义:[x]表示不超过实数x的最大整数.已知数列{an}的通项公式为an=[
n],求证:存在{an}的无穷子数列{bn},使得对任意的正整数n,均有bn除以4的余数为1.
【答案】
(1)证明:∵(
+1)m=
xm+ym,
∴(
+1)m+1=(
xm+ym)(
+1)=
(xm+ym)+(2xm+ym)
得ym+1=2xm+ym,即ym+1与ym同奇偶,
而当m=1时,y1为奇数;
∴ym为奇数
(2)证明:由二项式定理得(
﹣1)m=
xm﹣ym,
则2xm2﹣ym2=1,即2xm2=ym2+1>ym2,
∴ym4<2xm2ym2=ym2(ym2+1)<(ym2+1)2,
从而有ym2<
xmym<ym2+1,
令n=xmym,则bn=[
n]=[
xmym]=ym2,
由(1)知ym为奇数,
∴bn除以4的余数为1
【解析】(1)根据条件得(
+1)m+1=
(xm+ym)+(2xm+ym),判断ym+1与ym同奇偶,进行判断即可.(2)由二项式定理得(
﹣1)m=
xm﹣ym , 建立方程组进行转化求解证明即可.
科目:高中数学 来源: 题型:
【题目】曲线C1的参数方程为
(θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的
倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.
(1)求曲线C2和直线l的普通方程.
(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数
,当x∈(-3,2)时,
>0,当x∈(-
,-3)
(2,+
)时,
<0
(I)求a,b的值;
(II)若不等式
的解集为R,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,离心率为
.
(1)求椭圆
的方程;
(2)
,
是过点
且互相垂直的两条直线,其中
交圆
于
,
两点,
交椭圆
于另一个点
,求
面积取得最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有
个红球
且
和
个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(1)用
表示一次摸奖中奖的概率
;
(2)若
,设三次摸奖(每次摸奖后球放回)恰好有
次中奖,求
的数学期望
;
(3)设三次摸奖(每次摸奖后球放回)恰好有一次中奖的概率
,当
取何值时,
最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】怀化某中学对高三学生进行体质测试,已知高三某个班有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:cm)
男生成绩在195cm以上(包含195cm)定义为“合格”,成绩在195cm以下(不包含195cm)定义为“不合格”,女生成绩在185cm以上(包含185cm)定义为“合格”,成绩在185cm以下(不包含185cm)定义为“不合格”.
(1)求女生立定跳远成绩的中位数;
(2)若在男生中按成绩合格与否进行分层抽样,抽取6人,求抽取成绩为“合格”的学生人数;
(3)若从(2)中抽取的6名学生中任意选取4个人参加复试,求这4人中至少3人合格的概率. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题
对任意实数
,不等式
恒成立;命题
方程
表示焦点在
轴上的双曲线.
(1)若命题
为真命题,求实数
的取值范围;
(2)若命题:“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com