精英家教网 > 高中数学 > 题目详情
对于函数f(x)=a-
2
2x+1
(a∈R)
(1)是否存在实数a使函数f(x)为奇函数?
(2)证明函数f(x)的单调性.
考点:函数奇偶性的性质,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)若函数f(x)=a-
2
2x+1
为奇函数,则f(0)=0,进而可求出满足条件的实数a值.
(2)任取x1<x2,判断f(x1),f(x2)的大小,进而根据函数单调性的定义可判断出函数f(x)的单调性.
解答: 解:(1)若函数f(x)=a-
2
2x+1
为奇函数,
则f(0)=a-1=0,
解得:a=1,
当a=1时,f(x)=1-
2
2x+1
=
2x-1
2x+1
满足f(-x)=-f(x),
故存在a=1使函数f(x)为奇函数.
(2)设x1<x2,则2x1+1>0,2x2+1>0,2x12x2
∴f(x1)-f(x2)=a-
2
2x1+1
-(a-
2
2x2+1

=
2
2x2+1
-
2
2x1+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)
<0,
即f(x1)<f(x2),
故函数f(x)为增函数
点评:本题考查的知识点是函数奇偶性的判断,函数单调性的判断,熟练掌握函数奇偶性和函数单调性的定义是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)化简:
sin(-α)cos(2π+α)
sin(
π
2
+α)

(2)计算:4 
1
2
+2log23-log2
9
8

(3)已知
sinθ+cosθ
2sinθ-cosθ
=3,求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是正数,求证:
(1)aabbcc≥a 
b+c
2
b 
a+c
2
c 
a+b
2
;  
(2)
a+b
2
a+babba

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-3sin2x-cos2x+2.
(1)求f(x)的最大值;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足b=
3
a,sin(2A+C)=2sinA+2sinAcos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ln(x+1).
(1)求证:当x∈(0,+∞)时f(x)>x恒成立;
(2)求证:
1
22
+
2
32
+…+
2013
20142
<ln2015;
(3)求证:
n
i=1
(sin
i-1
n
+
n
i+n
)
<n(1-cos1+ln2).

查看答案和解析>>

科目:高中数学 来源: 题型:

把一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,给定方程组
ax+by=3
x+2y=2

(1)试求方程组只有一解的概率;
(2)求方程组只有正数解(x>0,y>0)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2-bx的图象与x轴相切于点(1,0).
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[-1,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,函数f(x)=2x2+(x-a)•|x-a|,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],则f(x2-3x-5)的定义域为
 

查看答案和解析>>

同步练习册答案