精英家教网 > 高中数学 > 题目详情
5.不等式a2+b2-a2b2-1≤0成立的充要条件是(  )
A.|a|≥1且|b|≥1B.|a|≤1且|b|≤1C.(|a|-1)(|b|-1)≥0D.(|a|-1)(|b|-1)≤0

分析 a2+b2-a2b2-1≤0?(a2-1)(b2-1)≥0?(|a|-1)(|b|-1)≥0.即可判断出结论.

解答 解:a2+b2-a2b2-1≤0?a2(1-b2)+(b2-1)≤0?(b2-1)(1-a2)≤0?(a2-1)(b2-1)≥0?(|a|-1)(|b|-1)≥0.
故选:C.

点评 本题考查不等式的性质与解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.定义在[1,+∞)上的函数f(x)满足:①f(2x)=af(x)(a>0);②当1≤x≤2时,$f(x)=\frac{1}{2}|sin(πx)|$.若分别以函数f(x)的极值点和相应极值为横、纵坐标的点都在一条直线上,则a的值为1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设曲线C:f(x)=alnx+bx,f'(x)表示f(x)导函数.已知函数f(x)在x=1处有极值-1
(1)求f(x)的解析式.
(2)数列{an}满足a1=1,an+1=2f′($\frac{1}{{a}_{n}}$)+3.求a2,a3,a4,用不完全归纳法猜想{an}的通项公式并用数学归纳法加以证明.
(3)在(2)的基础上用反证法证明:数列{an}中不存在任何不同三项成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.随机变量ξ,η满足-η=2ξ+2,若ξ的期望Eξ=3,则η的期望Eη=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在边长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点.
(1)求证:CF∥平面A1DE;
(2)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{{x}^{2}}{2}$-alnx
(1)求函数y=f(x)的单调区间和极值;
(2)若函数f(x)在区间(1,e2]内恰有两个零点,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sinx,g(x)=2$\sqrt{3}$cosx,直线x=m与f(x),g(x)的图象分别交M,N两点,则|MN|的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.2sin215°-1的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图为一简单几何体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=DA=2,EC=1,N为线段PB的中点.
(Ⅰ)证明:NE⊥PD;
(Ⅱ)求四棱锥B-CEPD的体积.

查看答案和解析>>

同步练习册答案