精英家教网 > 高中数学 > 题目详情
16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,过圆x2+y2=$\frac{12}{7}$上一点($\frac{6}{7}$,$\frac{4\sqrt{3}}{7}$)作圆的切线,切线l恰好经过椭圆的右顶点和上顶点,A为椭圆上异于长轴顶点的任意一点.
(1)求椭圆C的标准方程;
(2)已知点P(4,0),直线AP与椭圆的另一个交点为B,直线BF与椭圆的另一个交点为C,设直线AP的斜率为k1,直线BF的斜率为k2,求$\overrightarrow{PA}$•$\overrightarrow{FC}$的取值范围.

分析 (1)由题意可知:求得切线方程,求得顶点坐标,求得a和b的值,求得椭圆C的标准方程;
(2)设A,B和C点坐标,分别将直线AP和BF的方程代入椭圆方程,利用韦达定理求得x1•x2和x2•x3,求得x2=x3,y2=-y1,由向量的数量积的坐标运算及二次函数的性质即可求得$\overrightarrow{PA}$•$\overrightarrow{FC}$的取值范围.

解答 解:(1)过点($\frac{6}{7}$,$\frac{4\sqrt{3}}{7}$)的切线方程为$\frac{6}{7}x$+$\frac{4\sqrt{3}}{7}$y=$\frac{12}{7}$,即3x+2$\sqrt{3}$y=6,
右顶点(2,0),上顶点(0,$\sqrt{3}$),
即a=2,b=$\sqrt{3}$,
椭圆C的标准方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)设A(x1,y1),B(x2,y2),C(x3,y3),
由题意知:AP的方程为y=k1(x-4),
$\left\{\begin{array}{l}{y={k}_{1}(x-4)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(4${k}_{1}^{2}$+3)x2+32${k}_{1}^{2}$+64${k}_{1}^{2}$-12=0,
x1•x2=$\frac{64{k}_{1}^{2}-12}{4{k}_{1}^{2}+3}$=16-$\frac{60}{4{k}_{1}^{2}+3}$,
将k1=$\frac{{y}_{2}}{{x}_{2}-4}$,${y}_{2}^{2}$=3-$\frac{3}{4}{x}_{2}^{2}$,代入得:x1•x2=$\frac{8{x}_{2}-5{x}_{2}^{2}}{5-2{x}_{2}}$,
BF的方程,y=k2(x-4),代入椭圆方程,
整理得:(4${k}_{2}^{2}$+3)x2-8${k}_{2}^{2}$x+4${k}_{2}^{2}$-12=0,
x2•x3=$\frac{4{k}_{2}^{2}-12}{4{k}_{2}^{2}+3}$=1-$\frac{15}{4{k}^{2}+3}$,
将k2=$\frac{{y}_{2}}{{x}_{2}-1}$,${y}_{2}^{2}$=3-$\frac{3}{4}$${x}_{2}^{2}$,代入得:x2•x3=$\frac{8{x}_{2}-5{x}_{2}^{2}}{5-2{x}_{2}}$,
∴x2=x3
又AC不重合,
∴y2=-y1
$\overrightarrow{PA}$•$\overrightarrow{FC}$=(x1-4,y1)•(x1-1,-y1),
=${x}_{1}^{2}$-5x1+4-${y}_{1}^{2}$,
=$\frac{7}{4}$${x}_{1}^{2}$-5x1+1,
=$\frac{7}{4}$(x1-$\frac{10}{7}$)2-$\frac{18}{7}$,(-2<x1<2),
∴-$\frac{18}{7}$≤$\overrightarrow{PA}$•$\overrightarrow{FC}$<18.

点评 本题考查了椭圆方程的求法,考查了直线与圆,圆与椭圆的位置关系,一元二次函数的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图,如图所示,则该几何体的体积为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等差数列{an}中,Sn为它的前n项和,且S4=2,S8=6,则S12=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=kx-1与椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{t}$=1恒有公共点,则t的值可能是(  )
A.-1B.0.5C.2D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.2015年,一列CRH5型高速车组进行300000千米直线运营考核,标志中国高铁车从“中国制造”到“中国创新”的飞跃,将300000用科学记数法表示为(  )
A.3×106B.3×105C.0.3×106D.30×104

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:
是否需要志愿者
性别
需要4030
不需要160270
P(K2≥k)0.050.010.001
k3.8416.63510.828
附:K2的观测值$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-ax2+x.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)在区间[1,2]为单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{7}$,$sinB=\frac{{\sqrt{21}}}{7}$,求AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,
(1)求b的值;
(2)曲线y=f(x)在点(2,2)处的切线斜率-1,求实数a,c的值;
(3)若a=2,讨论函数f(x)的零点个数.

查看答案和解析>>

同步练习册答案