| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 根据椭圆的方程,算出它的焦点坐标为B(0,-1)和B'(0,1).因此连接PB'、AB',根据椭圆的定义得|PA|+|PB|=|PA|+(2a-|PB'|)=4+(|PA|-|PB'|).再由三角形两边之差小于第三边,得到当且仅当点P在AB'延长线上时,|PA|+|PB|=4+|AB'|=5达到最大值,从而得到本题答案.
解答
解:∵椭圆方程为$\frac{{y}^{2}}{4}$$+\frac{{x}^{2}}{3}$=1,
∴焦点坐标为B(0,-1)和B'(0,1),
连接PB'、AB',根据椭圆的定义,
得|PB|+|PB'|=2a=4,可得|PB|=4-|PB'|,
因此|PA|+|PB|=|PA|+(4-|PB'|)=4+(|PA|-|PB'|)
∵|PA|-|PB'|≤|AB'|
∴|PA|+|PB|≤2a+|AB'|=4+1=5.
当且仅当点P在AB'延长线上时,等号成立.
综上所述,可得|PA|+|PB|的最大值为5.
故选:D.
点评 本题给出椭圆内部一点A,求椭圆上动点P与A点和一个焦点B的距离和的最大值,着重考查了椭圆的定义、标准方程和简单几何性质等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.4987 | B. | 0.8413 | C. | 0.9772 | D. | 0.9987 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$+y2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 20+4$\sqrt{2}$ | C. | 24+4$\sqrt{2}$ | D. | 20+4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | -$\frac{π}{4}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com