分析 (1)如图所示,建立空间直角坐标系,设平面A1BC的法向量为$\overrightarrow{m}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}B}=0}\\{\overrightarrow{m}•\overrightarrow{BC}=0}\end{array}\right.$,可得$\overrightarrow{m}$.设直线PC与平面A1BC所成角为θ,则sinθ=$|cos<\overrightarrow{m},\overrightarrow{CP}>|$=$\frac{|\overrightarrow{m}•\overrightarrow{CP}|}{|\overrightarrow{m}||\overrightarrow{CP}|}$.
(2)设二面角P-A1C-B的平面角为α,由图可知为锐角,由于sinα=$\frac{2}{3}$,可得cosα=$\sqrt{1-si{n}^{2}α}$.由于$\overrightarrow{BP}$=λ$\overrightarrow{B{B}_{1}}$(0≤λ≤1),可得P(1,0,2λ).设平面A1CP的法向量为$\overrightarrow{n}$=(x0,y0,z0),$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$,即可得出.
解答
解:(1)如图所示,建立空间直角坐标系,
A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,2),P$(1,0,\frac{2}{3})$.
$\overrightarrow{{A}_{1}B}$=(1,0,-2),$\overrightarrow{BC}$=(-1,1,0),$\overrightarrow{CP}$=$(1,-1,\frac{2}{3})$.
设平面A1BC的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}B}=0}\\{\overrightarrow{m}•\overrightarrow{BC}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x-2z=0}\\{-x+y=0}\end{array}\right.$,取$\overrightarrow{m}$=(2,2,1),
设直线PC与平面A1BC所成角为θ,
则sinθ=$|cos<\overrightarrow{m},\overrightarrow{CP}>|$=$\frac{|\overrightarrow{m}•\overrightarrow{CP}|}{|\overrightarrow{m}||\overrightarrow{CP}|}$=$\frac{\frac{2}{3}}{\sqrt{1+1+\frac{4}{9}}\sqrt{9}}$=$\frac{\sqrt{22}}{33}$.
(2)设二面角P-A1C-B的平面角为α,由图可知为锐角,
∵sinα=$\frac{2}{3}$,∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{5}}{3}$.
∵$\overrightarrow{BP}$=λ$\overrightarrow{B{B}_{1}}$(0≤λ≤1),
∴P(1,0,2λ).
∴$\overrightarrow{CP}$=(1,-1,2λ),$\overrightarrow{{A}_{1}P}$=(1,0,2λ-2).
设平面A1CP的法向量为$\overrightarrow{n}$=(x0,y0,z0),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CP}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}P}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}_{0}-{y}_{0}+2λ{z}_{0}=0}\\{{x}_{0}+(2λ-2){z}_{0}=0}\end{array}\right.$,
取$\overrightarrow{n}$=(2-2λ,2,1),
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2(2-2λ)+4+1}{\sqrt{9}\sqrt{(2-2λ)^{2}+5}}$=$\frac{9-4λ}{3\sqrt{(2-2λ)^{2}+5}}$.
∴$\frac{\sqrt{5}}{3}$=$\frac{9-4λ}{3\sqrt{(2-2λ)^{2}+5}}$.
化简解得:λ2+8λ-9=0,0≤λ≤1,
解得λ=1.
点评 本题考查了空间角与空间位置关系、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com